Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hongmei Bu is active.

Publication


Featured researches published by Hongmei Bu.


Ecotoxicology and Environmental Safety | 2010

Temporal and spatial variations of water quality in the Jinshui River of the South Qinling Mts., China

Hongmei Bu; Xiang Tan; Siyue Li; Quanfa Zhang

Water pollution has become a growing threat to human society and natural ecosystems in recent decades, increasing the need to better understand the spatial and temporal variabilities of pollutants within aquatic systems. This study sampled water quality at 12 sampling sites from October 2006 to August 2008 in the Jinshui River of the South Qinling Mts., China. Multivariate statistical techniques and gridding methods were used to investigate the temporal and spatial variations of water quality and identify the main pollution factors and sources. Two-way analysis of variance (ANOVA) showed that 25 studied water quality variables had significant temporal differences (p<0.01) and spatial variability (p<0.01). Using cluster analysis, the 12 sampling sites were classified into three pollution level groups (no pollution, moderate pollution, and high pollution) based on similarity of water quality variables. Factor analysis determined that 80.4% of the total variance was explained by five factors, that is, salinity, trophicity, organic pollution, oxide-related process, and erosion. The gridding methods illustrated that water quality progressively deteriorated from headwater to downstream areas. The analytical results suggested that the water pollution primarily resulted from domestic wastewater and agricultural runoff, and provided critical information for water resource conservation in mountainous watersheds of the South Qinling Mts., China.


Science of The Total Environment | 2011

Nitrogen pollution and source identification in the Haicheng River basin in Northeast China.

Hongmei Bu; Wei Meng; Yuan Zhang

A survey was conducted in the Haicheng River near Liaodong Bay to analyze the characteristics and sources of the in-stream nitrogen pollution throughout the year 2010. The results indicated that the total nitrogen (TN) concentrations in the river water all exceeded the GB3838-2002 standard for Class V guideline of 2.0 mg/l at all sampling sites during the sampling seasons. Ammoniacal nitrogen (NH₃-N) dominated TN during the spring season, while nitrate nitrogen (NO₃-N) dominated during the summer and autumn seasons. Different forms of nitrogen had significant seasonal variations (p<0.01 or p<0.05). Only NH₃-N and NO₃-N displayed distinct spatial differences at p<0.05 and p<0.001, respectively. Most forms of nitrogen were interrelated with physicochemical parameters during different seasons, displaying nitrification and denitrification processes that occurred in the river rather than seasonal biological demand. Based on the nitrogen parameters, the 30 sampling sites were divided into three clusters, by which the pollution sources from chemical nitrogen fertilizers, animal wastes, domestic sewage, and industrial wastewater were identified. Generally, the Haicheng River basin provided about 700tons of the annual TN flux, contributing to the eutrophication of the Liaodong Bay and Bohai Sea.


Environmental Science and Pollution Research | 2012

Eutrophication in the Yunnan Plateau lakes: the influence of lake morphology, watershed land use, and socioeconomic factors

Wenzhi Liu; Siyue Li; Hongmei Bu; Quanfa Zhang; Guihua Liu

IntroductionLakes play an important role in socioeconomic development and ecological balance in China, but their water quality has deteriorated considerably in recent decades. In this study, we investigated the spatial–temporal variations of eutrophication parameters (secchi depth, total nitrogen, total phosphorus, chemical oxygen demand, chlorophyll-a, trophic level index, and trophic state index) and their relationships with lake morphology, watershed land use, and socioeconomic factors in the Yunnan Plateau lakes.DiscussionResults indicated that about 77.8% of lakes were eutrophic according to trophic state index. The plateau lakes showed spatial variations in water quality and could be classified into high-nutrient and low-nutrient groups. However, because watersheds were dominated by vegetation, all eutrophication parameters except chlorophyll-a showed no significant differences between the wet and dry seasons. Lake depth, water residence time, volume, and percentage of built-up land were significantly related to several eutrophication parameters. Agricultural land use and social–economic factors had no significant correlation with all eutrophication parameters. Stepwise regression analyses demonstrated that lake depth and water residence time accounted for 73.8% to 87.6% of the spatial variation of single water quality variables, respectively. Redundancy analyses indicated that lake morphology, watershed land use, and socioeconomic factors together explained 74.3% of the spatial variation in overall water quality. The results imply that water quality degradation in the plateau lakes may be mainly due to the domestic and industrial wastewaters. This study will improve our understanding of the determinants of lake water quality and help to design efficient strategies for controlling eutrophication in the plateau region.


Environmental Earth Sciences | 2013

Classification of rivers based on water quality assessment using factor analysis in Taizi River basin, northeast China

Jun Wan; Hongmei Bu; Yuan Zhang; Wei Meng

A method for river classification based on water quality assessment (WQA) was introduced using factor analysis (FA) in this paper. Sixty-nine sampling sites and 20 water quality parameters in Taizi River basin were selected for monitoring and analysis. Five factors were determined in FA, denoted as general, hardness, trophic, nitrogen pollution, and physical factors. The total factor scores (TFSs) of the WQA results from all sampling sites were calculated by the eigenvalue and factor score of each factor. The TFSs of 69 sites were interpolated with the measure of inverse distance weighted in the river buffer zone generated by ArcGIS 9.2 software to form a continuous spatial distribution along river channels. All streams were divided into five classes marked “excellent”, “good”, “fair”, “poor”, and “seriously polluted”. The classification result showed that the water quality of Taizi River basin deteriorated gradually from the mountain area to the plain area. Sewage and intensive human activities contributed to the deterioration of water quality since towns and farmland were dotted densely along the river basin.


Science of The Total Environment | 2015

The role of anthropogenic and natural factors in shaping the geochemical evolution of groundwater in the Subei Lake basin, Ordos energy base, Northwestern China

Fei Liu; Xianfang Song; Lihu Yang; Dongmei Han; Yinghua Zhang; Ying Ma; Hongmei Bu

Groundwater resources are increasingly exploited for industrial and agricultural purposes in many arid regions globally, it is urgent to gain the impact of the enhanced anthropogenic pressure on the groundwater chemistry. The aim of this study was to acquire a comprehensive understanding of the evolution of groundwater chemistry and to identify the impact of natural and anthropogenic factors on the groundwater chemistry in the Subei Lake basin, Northwestern China. A total of 153 groundwater samples were collected and major ions were measured during the three campaigns (August and December 2013, May 2014). At present, the major hydrochemical facies in unconfined groundwater are Ca-Mg-HCO3, Ca-Na-HCO3, Na-Ca-HCO3, Na-HCO3, Ca-Mg-SO4 and Na-SO4-Cl types, while the main hydrochemical facies in confined groundwater are Ca-Mg-HCO3, Ca-Na-HCO3, Na-Ca-HCO3, Ca-HCO3 and Na-HCO3 types. Relatively greater seasonal variation can be observed in the chemical constituents of confined groundwater than that of unconfined groundwater. Rock weathering predominates the evolution of groundwater chemistry in conjunction with the cation exchange, and the dissolution/precipitation of gypsum, halite, feldspar, calcite and dolomite are responsible for the chemical constituents of groundwater. Anthropogenic activities can be classified as: (1) groundwater overexploitation; (2) excessive application of fertilizers in agricultural areas. Due to intensive groundwater pumping, the accelerated groundwater mineralization resulted in the local changes in hydrochemical facies of unconfined groundwater, while the strong mixture, especially a large influx of downward leakage from the unconfined aquifer into the confined aquifer, played a vital role in the fundamental variation of hydrochemical facies in confined aquifer. The nitrate contamination is mainly controlled by the local hydrogeological settings coupled with the traditional flood irrigation. The deeper insight into geochemical evolution of groundwater obtained from this study can be beneficial to improving groundwater management for sustainable development in the rapidly industrialized areas.


Environmental Earth Sciences | 2012

A hydrochemical framework and water quality assessment of river water in the upper reaches of the Huai River Basin, China

Lihu Yang; Xianfang Song; Yinghua Zhang; Ruiqiang Yuan; Ying Ma; Dongmei Han; Hongmei Bu

This study characterizes the major ion chemistry for river water in the upper reaches of Bengbu Sluice in the Huai River Basin in wet and dry seasons, and assessed the suitability of water quality for irrigation and human consumption. It is found that sodium and calcium are the dominant cations and bicarbonate is the dominant anion in most river water samples. River water in Zhoukou of the Ying River and Bozhou of the Guo River is characterized as a Na–Cl water type, whereas river water from the upper reaches and the lower reaches of the two cities is characterized as a Na-HCO3 water type, which may be attributed by anthropogenic influences in these cities. The river water types vary from the upstream to the downstream of the Fuyang sluice, which indicates that the sluices play a critical role in determining the water type. The water chemistry of these rivers clearly shows that the second group of rivers is affected more severely by waste effluent than is the first group. Calculated values of sodium adsorption ratio, %Na, and residual sodium carbonate indicate that, in general, most of the river water is of acceptable irrigation quality. The river water in Zhoukou section of the Ying River and the Bozhou section of the Guo River cannot be used as drinking water; pollution control should be further improved and enhanced across the river.


Environmental Monitoring and Assessment | 2014

Spatial and seasonal characteristics of river water chemistry in the Taizi River in Northeast China.

Hongmei Bu; Wei Meng; Yuan Zhang

Anthropogenic activities have led to water quality deterioration in many parts of the world, especially in Northeast China. The current work investigated the spatiotemporal variations of water quality in the Taizi River by multivariate statistical analysis of data from the 67 sampling sites in the mainstream and major tributaries of the river during dry and rainy seasons. One-way analysis of variance indicated that the 20 measured variables (except pH, 5-day biological oxygen demand, permanganate index, and chloride, orthophosphate, and total phosphorus concentrations) showed significant seasonal (p ≤ 0.05) and spatial (p < 0.05) variations among the mainstream and major tributaries of the river. Hierarchical cluster analysis of data from the different seasons classified the mainstream and tributaries of the river into three clusters, namely, less, moderately, and highly polluted clusters. Factor analysis extracted five factors from data in the different seasons, which accounted for the high percentage of the total variance and reflected the integrated characteristics of water chemistry, organic pollution, phosphorous pollution, denitrification effect, and nitrogen pollution. The results indicate that river pollution in Northeast China was mainly from natural and/or anthropogenic sources, e.g., rainfall, domestic wastewater, agricultural runoff, and industrial discharge.


Environmental Earth Sciences | 2015

Decadal climate variability and vulnerability of water resources in arid regions of Northwest China

Long Wan; Jun Xia; Si Hong; Hongmei Bu; Like Ning; Junxu Chen

Decadal climate change has evidently posed serious threats and challenges to water resource management across arid regions in China. Thus, vulnerability assessment of water resources has been considered vital to adapt to or cope with the adverse effects of climate change. This paper investigated spatial patterns of decadal climate change and water resources variability in the arid regions of Northwest China based on a GIS analysis. The Budyko hypothesis was used to investigate the climate sensitivity of basin streamflow. A framework was proposed to assess the vulnerability of water resources as a function of exposure, sensitivity, and adaptability. Results indicated that a significant increase in precipitation and water resources (both surface water resources and groundwater recharge) occurred primarily in Xinjiang Province after the 1980s. Water utilization ratio in arid regions was very high, and groundwater abstraction substantially increased as it exceeded the exploitable volume in the Hexi Corridor, the Tuha Basin, and the north of the Tianshan Mountain. Exposure of water resources to drought in arid regions decreased from the 1960s to the 2000s. The sensitivity of water resource response to precipitation changes varied between regions. Water resources were more sensitive to precipitation variability in the river basins in the Hexi Corridor and inner Mongolia. In most arid regions in China, water resources were evaluated with low adaptability and high or severe vulnerability in the 2000s. In the future, the precipitation is projected to increase significantly under the RCP2.6, RCP4.5, and RCP8.5 scenarios. Particularly, water vulnerability will be significantly reduced as the precipitation increases in most river basins under the RCP8.5 scenario. Water resources in the rivers in the Qaidam Basin, the Qinhai Lake Basin, the inner Mongolia, and the north of Kunlun Mountain will have low or medium vulnerability in the 2030s and 2050s. However, in the Tuha Basin and Hexi Corridor, vulnerability will remain severe in the 2050s despite the significant increase in precipitation and implementation of water-saving measures. Hence, measures that will facilitate sustainable water resource management must be identified and implemented.


Science of The Total Environment | 2016

Effects of land-use patterns on in-stream nitrogen in a highly-polluted river basin in Northeast China.

Hongmei Bu; Yuan Zhang; Wei Meng; Xianfang Song

This study investigated the effects of land-use patterns on nitrogen pollution in the Haicheng River basin in Northeast China during 2010 by conducting statistical and spatial analyses and by analyzing the isotopic composition of nitrate. Correlation and stepwise regressions indicated that land-use types and landscape metrics were correlated well with most river nitrogen variables and significantly predicted them during different sampling seasons. Built-up land use and shape metrics dominated in predicting nitrogen variables over seasons. According to the isotopic compositions of river nitrate in different zones, the nitrogen sources of the river principally originated from synthetic fertilizer, domestic sewage/manure, soil organic matter, and atmospheric deposition. Isotope mixing models indicated that source contributions of river nitrogen significantly varied from forested headwaters to densely populated towns of the river basin. Domestic sewage/manure was a major contributor to river nitrogen with the proportions of 76.4 ± 6.0% and 62.8 ± 2.1% in residence and farmland-residence zones, respectively. This research suggested that regulating built-up land uses and reducing discharges of domestic sewage and industrial wastewater would be effective methods for river nitrogen control.


Environmental Science and Pollution Research | 2015

Characteristics and source identification of dissolved trace elements in the Jinshui River of the South Qinling Mts., China

Hongmei Bu; WeiBo Wang; Xianfang Song; Quanfa Zhang

Dissolved trace elements and physiochemical parameters were analyzed to investigate their physicochemical characteristics and identify their sources at 12 sampling sites of the Jinshui River in the South Qinling Mts., China from October 2006 to November 2008. The two-factor ANOVA indicated significant temporal variations of the dissolved Cu, Fe, Sr, Si, and V (p < 0.001 or p < 0.05). With the exception of Sr (p < 0.001), no significant spatial variations were found. Distributions and concentrations of the dissolved trace elements displayed that dissolved Cu, Fe, Sr, Si, V, and Cr were originated from chemical weathering and leaching from the soil and bedrock. Dissolved Cu, Fe, Sr, As, and Si were also from anthropogenic inputs (farming and domestic effluents). Correlation and regression analysis showed that the chemical and physical processes of dissolved Cu was influenced by water temperature and dissolved oxygen (DO) to some degree. Dissolved Fe and Sr were affected by colloid destabilization or sedimentary inputs. Concentrations of dissolved Si were slightly controlled by biological uptake. Principal component analysis confirmed that Fe, Sr, and V resulted from domestic effluents, agricultural runoff, and confluence, whereas As, Cu, and Si were from agricultural activities, and Cr and Zn through natural processes. The research results provide a reference for ecological restoration and protection of the river environment in the Qinling Mts., China.

Collaboration


Dive into the Hongmei Bu's collaboration.

Top Co-Authors

Avatar

Xianfang Song

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dongmei Han

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ying Ma

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yinghua Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lihu Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Quanfa Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Siyue Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fei Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jun Wan

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge