Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hongqiao Zhang is active.

Publication


Featured researches published by Hongqiao Zhang.


Molecular Aspects of Medicine | 2009

Glutathione: overview of its protective roles, measurement, and biosynthesis.

Henry Jay Forman; Hongqiao Zhang; Alessandra Rinna

This review is the introduction to a special issue concerning, glutathione (GSH), the most abundant low molecular weight thiol compound synthesized in cells. GSH plays critical roles in protecting cells from oxidative damage and the toxicity of xenobiotic electrophiles, and maintaining redox homeostasis. Here, the functions and GSH and the sources of oxidants and electrophiles, the elimination of oxidants by reduction and electrophiles by conjugation with GSH are briefly described. Methods of assessing GSH status in the cells are also described. GSH synthesis and its regulation are addressed along with therapeutic approaches for manipulating GSH content that have been proposed. The purpose here is to provide a brief overview of some of the important aspects of glutathione metabolism as part of this special issue that will provide a more comprehensive review of the state of knowledge regarding this essential molecule.


Archives of Biochemistry and Biophysics | 2008

The chemistry of cell signaling by reactive oxygen and nitrogen species and 4-hydroxynonenal

Henry Jay Forman; Jon M. Fukuto; Thomas W. Miller; Hongqiao Zhang; Alessandra Rinna; Smadar Levy

During the past several years, major advances have been made in understanding how reactive oxygen species (ROS) and nitrogen species (RNS) participate in signal transduction. Identification of the specific targets and the chemical reactions involved still remains to be resolved with many of the signaling pathways in which the involvement of reactive species has been determined. Our understanding is that ROS and RNS have second messenger roles. While cysteine residues in the thiolate (ionized) form found in several classes of signaling proteins can be specific targets for reaction with H(2)O(2) and RNS, better understanding of the chemistry, particularly kinetics, suggests that for many signaling events in which ROS and RNS participate, enzymatic catalysis is more likely to be involved than non-enzymatic reaction. Due to increased interest in how oxidation products, particularly lipid peroxidation products, also are involved with signaling, a review of signaling by 4-hydroxy-2-nonenal (HNE) is included. This article focuses on the chemistry of signaling by ROS, RNS, and HNE and will describe reactions with selected target proteins as representatives of the mechanisms rather attempt to comprehensively review the many signaling pathways in which the reactive species are involved.


Journal of Biological Chemistry | 2012

Nrf2-dependent Induction of Proteasome and Pa28αβ Regulator Are Required for Adaptation to Oxidative Stress

Andrew M. Pickering; Robert A. Linder; Hongqiao Zhang; Henry Jay Forman; Kelvin J.A. Davies

Background: Adaptation to oxidative stress involves increased expression of 20 S proteasome, Pa28αβ, and immunoproteasome. Results: Blocking Nrf2 prevents proteasome and Pa28αβ induction, and Nrf2 is required for full adaptation. Conclusion: Adaptation occurs through Nrf2-dependent induction of 20 S proteasome and Pa28αβ, whereas immunoproteasome is induced independently. Significance: The Nrf2 signal transduction pathway controls 20 S proteasome/Pa28αβ contributions to stress-adaptation, but not immunoproteasome contributions. The ability to adapt to acute oxidative stress (e.g. H2O2, peroxynitrite, menadione, and paraquat) through transient alterations in gene expression is an important component of cellular defense mechanisms. We show that such adaptation includes Nrf2-dependent increases in cellular capacity to degrade oxidized proteins that are attributable to increased expression of the 20 S proteasome and the Pa28αβ (11 S) proteasome regulator. Increased cellular levels of Nrf2, translocation of Nrf2 from the cytoplasm to the nucleus, and increased binding of Nrf2 to antioxidant response elements (AREs) or electrophile response elements (EpREs) in the 5′-untranslated region of the proteasome β5 subunit gene (demonstrated by chromatin immunoprecipitation (or ChIP) assay) are shown to be necessary requirements for increased proteasome/Pa28αβ levels, and for maximal increases in proteolytic capacity and stress resistance; Nrf2 siRNA and the Nrf2 inhibitor retinoic acid both block these adaptive changes and the Nrf2 inducers dl-sulforaphane, lipoic acid, and curcumin all replicate them without oxidant exposure. The immunoproteasome is also induced during oxidative stress adaptation, contributing to overall capacity to degrade oxidized proteins and stress resistance. Two of the three immunoproteasome subunit genes, however, contain no ARE/EpRE elements, and Nrf2 inducers, inhibitors, and siRNA all have minimal effects on immunoproteasome expression during adaptation to oxidative stress. Thus, immunoproteasome appears to be (at most) minimally regulated by the Nrf2 signal transduction pathway.


The FASEB Journal | 2003

Curcumin alters EpRE and AP-1 binding complexes and elevates glutamate-cysteine ligase gene expression

Dale A. Dickinson; Karen E. Iles; Hongqiao Zhang; Volker Blank; Henry Jay Forman

Dietary use of curcumin, the active component of tumeric, one of the most widely used spices, is linked to several beneficial health effects, although the underlying molecular mechanisms remain largely unknown. Correlations have been established between curcumin exposure and increases in enzymes for glutathione synthesis, particularly glutamate‐cysteine ligase (GCL), and metabolism as well as glutathione content, suggesting the eliciting of an adaptive response to stress. In this study, using HBE1 cells, we found that the mechanism of curcumin‐induced GCL elevation occurred via transcription of the two Gcl genes. Gcl transcription has been shown in several systems to be mediated through binding of transcription factor complexes to TRE and EpRE elements. Studies herein showed that curcumin caused modest but sustained increases in binding of proteins to DNA sequences for both cis elements but, more importantly, altered the compositions and nuclear content of proteins in these complexes. Curcumin exposure increased JunD and c‐Jun content in AP‐1 complexes and increased JunD while decreasing MafG/MafK in EpRE complexes. Thus, the beneficial effects elicited by curcumin appear to be due to changes in the pool of transcription factors that compose EpRE and AP‐1 complexes, affecting gene expression of GCL and other phase II enzymes.


Methods in Enzymology | 2005

γ‐Glutamyl Transpeptidase in Glutathione Biosynthesis

Hongqiao Zhang; Henry Jay Forman; Jinah Choi

Glutathione (GSH) is the most abundant nonprotein thiol in cells and has multiple biological functions. Glutathione biosynthesis by way of the gamma-glutamyl cycle is important for maintaining GSH homeostasis and normal redox status. As the only enzyme of the cycle located on the outer surface of plasma membrane, gamma-glutamyl transpeptidase (GGT) plays key roles in GSH homeostasis by breaking down extracellular GSH and providing cysteine, the rate-limiting substrate, for intracellular de novo synthesis of GSH. GGT also initiates the metabolism of glutathione S-conjugates to mercapturic acids by transferring the gamma-glutamyl moiety to an acceptor amino acid and releasing cysteinylglycine. GGT is expressed in a tissue-, developmental phase-, and cell-specific manner that may be related to its complex gene structure. In rodents, there is a single GGT gene, and several promoters that generate different mRNA subtypes and regulate its expression. In contrast, several GGT genes have been found in humans. During oxidative stress, GGT gene expression is increased, and this is believed to constitute an adaptation to stress. Interestingly, only certain mRNA subtypes are increased, suggesting a specific mode of regulation of GGT gene expression by oxidants. Here, protocols to measure GGT activity, relative levels of total and specific GGT mRNA subtypes, and GSH concentration are described.


Free Radical Biology and Medicine | 2015

Oxidative stress response and Nrf2 signaling in aging.

Hongqiao Zhang; Kelvin J.A. Davies; Henry Jay Forman

Increasing oxidative stress, a major characteristic of aging, has been implicated in a variety of age-related pathologies. In aging, oxidant production from several sources is increased, whereas antioxidant enzymes, the primary lines of defense, are decreased. Repair systems, including the proteasomal degradation of damaged proteins, also decline. Importantly, the adaptive response to oxidative stress declines with aging. Nrf2/EpRE signaling regulates the basal and inducible expression of many antioxidant enzymes and the proteasome. Nrf2/EpRE activity is regulated at several levels, including transcription, posttranslation, and interactions with other proteins. This review summarizes current studies on age-related impairment of Nrf2/EpRE function and discusses the changes in Nrf2 regulatory mechanisms with aging.


Free Radical Biology and Medicine | 2002

4-Hydroxynonenal induces glutamate cysteine ligase through JNK in HBE1 cells

Dale A. Dickinson; Karen E. Iles; Nobuo Watanabe; Takeo Iwamoto; Hongqiao Zhang; David M. Krzywanski; Henry Jay Forman

Glutathione is the most abundant non-protein thiol in the cell, with roles in cell cycle regulation, detoxification of xenobiotics, and maintaining the redox tone of the cell. The glutathione content is controlled at several levels, the most important being the rate of de novo synthesis, which is mediated by two enzymes, glutamate cysteine ligase (GCL), and glutathione synthetase (GS), with GCL being rate-limiting generally. The GCL holoenzyme consists of a catalytic (GCLC) and a modulatory (GCLM) subunit, which are encoded by separate genes. In the present study, the signaling mechanisms leading to de novo synthesis of GSH in response to physiologically relevant concentrations of 4-hydroxy-2-nonenal (4HNE), an endproduct of lipid peroxidation, were investigated. We demonstrated that exposure to 4HNE resulted in increased content of both Gcl mRNAs, both GCL subunits, phosphorylated JNK1 and c-Jun proteins, as well as Gcl TRE sequence-specific AP-1 binding activity. These increases were attenuated by pretreating the cells with a novel membrane-permeable JNK pathway inhibitor, while chemical inhibitors of the p38 or ERK pathways were ineffective. These data reveal that de novo GSH biosynthesis in response to 4HNE signals through the JNK pathway and suggests a major role for AP-1 driven expression of both Gcl genes in HBE1 cells.


Seminars in Cell & Developmental Biology | 2012

Glutathione synthesis and its role in redox signaling

Hongqiao Zhang; Henry Jay Forman

Glutathione (GSH) is the most abundant antioxidant and a major detoxification agent in cells. It is synthesized through two-enzyme reaction catalyzed by glutamate cysteine ligase and glutathione synthetase, and its level is well regulated in response to redox change. Accumulating evidence suggests that GSH may play important roles in cell signaling. This review will focus on the biosynthesis of GSH, the reaction of S-glutathionylation (the conjugation of GSH with thiol residue on proteins), GSNO, and their roles in redox signaling.


American Journal of Respiratory Cell and Molecular Biology | 2009

Redox Regulation of γ-Glutamyl Transpeptidase

Hongqiao Zhang; Henry Jay Forman

gamma-Glutamyl transpeptidase (GGT) catalyzes the transfer of the glutamyl moiety from glutathione, and glutathione S-conjugates to acceptors to form another amide or to water to produce free glutamate. Functionally, GGT plays important roles in glutathione homeostasis and mercapturic acid metabolism. The expression of GGT is increased as an adaptive response upon the exposure of oxidative stress. The underlying mechanism of this, however, is nebulous, as GGT gene structure is complex and its transcription is usually controlled by multiple promoters that generate several subtypes of GGT mRNAs. Studies reveal that signaling pathways such as Ras, ERK, p38MAPK, and PI3K are involved in the induction of GGT gene expression in response to oxidative stress. Thus, not surprisingly, induction of GGT mRNA subtypes and the involvement of multiple signaling pathways vary depending on cell type and stimuli.


Free Radical Biology and Medicine | 2012

Nrf2-regulated phase II enzymes are induced by chronic ambient nanoparticle exposure in young mice with age-related impairments ☆

Hongqiao Zhang; Honglei Liu; Kelvin J.A. Davies; Constantinos Sioutas; Caleb E. Finch; Todd E. Morgan; Henry Jay Forman

Many xenobiotic detoxifying (phase II) enzymes are induced by sublethal doses of environmental toxicants. However, these adaptive mechanisms have not been studied in response to vehicular-derived airborne nano-sized particulate matter (nPM). Because aging is associated with increased susceptibility to environmental toxicants, we also examined the expression of Nrf2-regulated phase II genes in middle-aged mice and their inducibility by chronic nPM. The nPM from vehicular traffic was collected in urban Los Angeles and reaerosolized for exposure of C57BL/6J male mice (3 and 18 months old) for 150 h over 10 weeks. Brain (cerebellum), liver, and lung were assayed by RT-PCR and/or Western blots for the expression of phase II enzymes, glutamate cysteine ligase (catalytic GCLC, and modifier GCLM subunits), NAD(P)H:quinone oxidoreductase 1 (NQO1), heme oxygenase 1 (HO-1), and relevant transcription factors, NF-E2-related factor 2 (Nrf2), c-Myc, Bach1. Chronic nPM exposure induced GCLC, GCLM, HO-1, NQO1 mRNA, and protein similarly in cerebellum, liver, and lung of young mice. Middle-aged mice had elevated basal levels, but showed impaired further induction by nPM. Similarly, Nrf2 increased with age and was induced by nPM in young but not old. c-Myc showed the same age and induction profile while the age increase in Bach1 was further induced by nPM. Chronic exposure to nanoparticles induced Nrf2-regulated detoxifying enzymes in brain (cerebellum), liver, and lung of young adult mice, indicating a systemic impact of nPM. In contrast, middle-aged mice did not respond above their elevated basal levels except for Bach1. The lack of induction of phase II enzymes in aging mice may be a model for the vulnerability of elderly to air pollution.

Collaboration


Dive into the Hongqiao Zhang's collaboration.

Top Co-Authors

Avatar

Henry Jay Forman

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Honglei Liu

University of California

View shared research outputs
Top Co-Authors

Avatar

Kelvin J.A. Davies

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dale A. Dickinson

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Lulu Zhou

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Karen E. Iles

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Caleb E. Finch

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Jenay Yuen

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Rui-Ming Liu

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge