Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hongxiang Ma is active.

Publication


Featured researches published by Hongxiang Ma.


Theoretical and Applied Genetics | 2005

Molecular mapping of a quantitative trait locus for aluminum tolerance in wheat cultivar Atlas 66

Hongxiang Ma; Guihua Bai; Brett F. Carver; Li-Li Zhou

Genetic improvement of aluminum (Al) tolerance is one of the cost-effective solutions to improve wheat (Triticum aestivum) productivity in acidic soils. The objectives of the present study were to identify quantitative trait loci (QTL) for Al-tolerance and associated PCR-based markers for marker-assisted breeding utilizing cultivar Atlas 66. A population of recombinant inbred lines (RILs) from the cross Atlas 66/Century was screened for Al-tolerance by measuring root-growth rate during Al treatment in hydroponics and root response to hematoxylin stain of Al treatment. After 797 pairs of SSR primers were screened for polymorphisms between the parents, 131 pairs were selected for bulk segregant analysis (BSA). A QTL analysis based on SSR markers revealed one QTL on the distal region of chromosome arm 4DL where a malate transporter gene was mapped. This major QTL accounted for nearly 50% of the phenotypic variation for Al-tolerance. The SSR markers Xgdm125 and Xwmc331 were the flanking markers for the QTL and have the potential to be used for high-throughput, marker-assisted selection in wheat-breeding programs.


Theoretical and Applied Genetics | 2010

Mapping quantitative trait loci for quality factors in an inter-class cross of US and Chinese wheat

Xiaochun Sun; Felix Marza; Hongxiang Ma; Brett F. Carver; Guihua Bai

Wheat quality factors are critical in determining the suitability of wheat (Triticum aestivum L.) for end-use product and economic value, and they are prime targets for marker-assisted selection. Objectives of this study were to identify quantitative trait loci (QTLs) that ultimately influence wheat market class and milling quality. A population of 132 F12 recombinant inbred lines (RILs) was derived by single-seed descent from a cross between the Chinese hard wheat line Ning7840 and the soft wheat cultivar Clark and grown at three Oklahoma locations from 2001 to 2003. Milling factors such as test weight (volumetric grain weight, TW), kernel weight (KW), and kernel diameter (KD) and market class factors such as wheat grain protein content (GPC) and kernel hardness index (HI) were characterized on the basis of a genetic map constructed from 367 SSR and 241 AFLP markers covering all 21 chromosomes. Composite interval mapping identified eight QTLs for TW, seven for KW, six for KD, two each for GPC and HI measured by near-infrared reflectance (NIR) spectroscopy, and four for HI measured by single kernel characterization system. Positive phenotypic correlations were found among milling factors. Consistent co-localized QTLs were identified for TW, KW, and KD on the short arms of chromosomes 5A and 6A. A common QTL was identified for TW and KD on the long arm of chromosome 5A. A consistent major QTL for HI peaked at the Pinb-D1 locus on the short arm of chromosome 5D and explained up to 85% of the phenotypic variation for hardness. We identified QTLs for GPC on 4B and the short arm of 3A chromosomes. The consistency of quality factor QTLs across environments reveals their potential for marker-assisted selection.


Euphytica | 2004

Molecular characterization of Fusarium head blight resistance from wheat variety Wangshuibai

Xu Zhang; Miaoping Zhou; Lijuan Ren; Guihua Bai; Hongxiang Ma; Olga E. Scholten; Peiguo Guo; Weizhong Lu

Fusarium head blight (FHB) is a destructive disease of wheat worldwide. FHB resistance genes from Sumai 3 and its derivatives such as Ning 7840 have been well characterized through molecular mapping. In this study, resistance genes in Wangshuibai, a Chinese landrace with high and stable FHB resistance, were analyzed through molecular mapping. A population of 104 F2-derived F7 recombinant inbred lines (RILs) was developed from the cross between resistant landrace Wangshuibai and susceptible variety Alondra‘s’. A total of 32 informative amplified fragment length polymorphism (AFLP) primer pairs (EcoRI/MseI) amplified 410 AFLP markers segregating among the RILs. Among them, 250 markers were mapped in 23 linkage groups covering a genetic distance of 2,430 cM. In addition, 90 simple sequence repeat (SSR) markers were integrated into the AFLP map. Fifteen markers associated with three quantitative trait loci (QTL) for FHB resistance (P < 0.01) were located on two chromosomes. One QTL was mapped on 1B and two others were mapped on 3B. One QTL on 3BS showed a major effect and explained up to 23.8% of the phenotypic variation for type II FHB resistance.


Molecular Breeding | 2007

Quantitative trait loci for aluminum resistance in wheat

Li-Li Zhou; Guihua Bai; Hongxiang Ma; Brett F. Carver

Quantitative trait loci (QTL) for wheat resistance to aluminum (Al) toxicity were analyzed using simple sequence repeats (SSRs) in a population of 192 F6 recombinant inbred lines (RILs) derived from a cross between an Al-resistant cultivar, Atlas 66 and an Al-sensitive cultivar, Chisholm. Wheat reaction to Al was measured by relative root growth and root response to hematoxylin stain in nutrient-solution culture. After screening 1,028 SSR markers for polymorphisms between the parents and bulks, we identified two QTLs for Al resistance in Atlas 66. One major QTL was mapped on chromosome 4D that co-segregated with the Al-activated malate transporter gene (ALMT1). Another minor QTL was located on chromosome 3BL. Together, these two QTLs accounted for about 57% of the phenotypic variation in hematoxylin staining score and 50% of the variation in net root growth (NRG). Expression of the minor QTL on 3BL was suppressed by the major QTL on 4DL. The two QTLs for Al resistance in Atlas 66 were also verified in an additional RIL population derived from Atlas 66/Century. Several SSR markers closely linked to the QTLs were identified and have potential to be used for marker-assisted selection (MAS) to improve Al-resistance of wheat cultivars in breeding programs.


Molecular Breeding | 2012

Single nucleotide polymorphism in wheat chromosome region harboring Fhb1 for Fusarium head blight resistance

Amy Bernardo; Hongxiang Ma; Dadong Zhang; Guihua Bai

Fusarium head blight (FHB) is a destructive disease that reduces wheat grain yield and quality. To date, the quantitative trait locus on 3BS (Fhb1) from Sumai 3 has shown the largest effect on FHB resistance. Single nucleotide polymorphism (SNP) is the most common form of genetic variation and is suitable for high-throughput marker-assisted selection (MAS). We analyzed SNPs derived from 23 wheat expressed sequence tags (ESTs) that previously mapped near Fhb1 on chromosome 3BS. Using 71 Ning 7840/Clark BC7F7 recombinant inbred lines and the single-base extension method, we mapped seven SNP markers between Xgwm533 and Xgwm493, flanking markers for Fhb1. Five of the SNPs explained 45–54% of the phenotypic variation for FHB resistance. Haplotype analysis of 63 wheat accessions from eight countries based on SNPs in EST sequences, simple sequence repeats, and sequence tagged sites in the Fhb1 region identified four major groups: (1) US-Clark, (2) Asian, (3) US-Ernie, and (4) Chinese Spring. The Asian group consisted of Chinese and Japanese accessions that carry Fhb1 and could be differentiated from other groups by marker Xsnp3BS-11. All Sumai 3-related accessions formed a subgroup within the Asian group and could be sorted out by Xsnp3BS-8. The SNP markers identified in this study should be useful for MAS of Fhb1 and fine mapping to facilitate cloning of the Fhb1 resistance gene.


Plant and Soil | 2006

Quantitative Trait Loci for Aluminum Resistance in Wheat Cultivar Chinese Spring

Hongxiang Ma; Guihua Bai; Weizhong Lu

Aluminum (Al) toxicity is one of the major constrains for wheat production in many wheat growing areas worldwide. Further understanding of inheritance of Al resistance may facilitate improvement of Al resistance of wheat cultivars (Triticum aestivum L.). A set of ditelosomic lines derived from the moderately Al-resistant wheat cultivar Chinese Spring was assessed for Al resistance. The root growth of ditelosomic lines DT5AL, DT7AL, DT2DS and DT4DS was significantly lower than that of euploid Chinese Spring under Al stress, suggesting that Al-resistance genes might exist on the missing chromosome arms of 5AS, 7AS, 2DL and 4DL of Chinese Spring. A population of recombinant inbred lines (RILs) from the cross Annong 8455 × Chinese Spring-Sumai 3 7A substitution line was used to determine the effects of these chromosome arms on Al resistance. A genetic linkage map consisting of 381 amplified fragment length polymorphism (AFLP) markers and 168 simple sequence repeat (SSR) markers was constructed to determine the genetic effect of the quantitative trait loci (QTLs) for Al resistance in Chinese Spring. Three QTLs, Qalt.pser-4D, Qalt.pser-5A and Qalt.pser-2D, were identified that enhanced root growth under Al stress, suggesting that inheritance of Al resistance in Chinese Spring is polygenic. The QTL with the largest effect was flanked by the markers of Xcfd23 and Xwmc331 on chromosome 4DL and most probably is multi-allelic to the major QTL identified in Atlas 66. Two additional QTLs, Qalt.pser-5A and Qalt.pser-2D on chromosome 5AS and 2DL, respectively, were also detected with marginal significance in the population. Some SSR markers identified in this study would be useful for marker-assisted pyramiding of different QTLs for Al resistance in wheat cultivars.


Plant Disease | 2006

Deletion of a Chromosome Arm Altered Wheat Resistance to Fusarium Head Blight and Deoxynivalenol Accumulation in Chinese Spring

Hongxiang Ma; Guihua Bai; Bikram S. Gill; L. Patrick Hart

Fusarium head blight (FHB), caused by Fusarium graminearum Schwabe, is an important disease of wheat worldwide. Production of deoxynivalenol (DON) in infected wheat grain by F. graminearum is a major safety concern when considering use of the grain as feed for livestock or for human consumption. Determining chromosome locations of FHB-related genes may facilitate enhancement of wheat resistance to FHB and DON accumulation. In this study, a set of 30 ditelosomic lines derived from Chinese Spring, a moderately FHB-resistant landrace from China, were evaluated for proportion of scabbed spikelets per inoculated spike in the greenhouse and for DON contamination in harvested grain over 2 years. Significant variation in the proportion of scabbed spikelets was observed among ditelosomic lines, ranging from 13 to 95%. Seven ditelosomic lines exhibited a greater proportion of scabbed spikelets and three of these also had greater DON content than Chinese Spring (P = 0.01), suggesting that those missing chromosome arms may carry genes that contribute to resistance to FHB. Six ditelosomic lines had a reduction in proportion of scabbed spikelets, suggesting that susceptibility factors or resistance suppressors may be on these missing chromosomal arms. Selection for low proportion of scabbed spikelets in general will select for low DON content.


Journal of Phytopathology | 2009

Resistance to Fusarium head Blight and Deoxynivalenol Accumulation in Chinese Barley

Hongxiang Ma; Hejing Ge; Xu Zhang; Weizhong Lu; Dazhao Yu; He Chen; Jianming Chen


Archive | 2008

Wheat fusarium stalk rot seedlings inoculation identification method

Peng Zhang; Miaoping Zhou; Hongxiang Ma; Guihong Yu; Lijuan Ren; Xu Zhang; Yan Huo


Archive | 2007

Molecule tag close linked to resistance QTL of wheat sharp eyespot, and application

Lijuan Ren; Miaoping Zhou; Guihong Yu; Xu Zhang; Weizhong Lu; Hongxiang Ma

Collaboration


Dive into the Hongxiang Ma's collaboration.

Top Co-Authors

Avatar

Xu Zhang

Szent István University

View shared research outputs
Top Co-Authors

Avatar

Guihua Bai

Kansas State University

View shared research outputs
Top Co-Authors

Avatar

Lijuan Ren

Szent István University

View shared research outputs
Top Co-Authors

Avatar

Li-Li Zhou

Kansas State University

View shared research outputs
Top Co-Authors

Avatar

Olga E. Scholten

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Amy Bernardo

Kansas State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dadong Zhang

Kansas State University

View shared research outputs
Top Co-Authors

Avatar

Xiaochun Sun

Kansas State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge