Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hongxing Liu is active.

Publication


Featured researches published by Hongxing Liu.


Nature Protocols | 2014

Synthesis, labeling and bioanalytical applications of a tris(2,2′-bipyridyl)ruthenium(II)-based electrochemiluminescence probe

Xiaoming Zhou; Debin Zhu; Yuhui Liao; Weipeng Liu; Hongxing Liu; Zhaokui Ma; Da Xing

Assays using probes labeled with electrochemiluminescent moieties are extremely powerful analytical tools that are used in fields such as medical diagnostics, environmental analysis and food safety monitoring, in which sensitive, reliable and reproducible detection of biomolecules is a requirement. The most efficient electrochemiluminescence (ECL) reaction to date is based on tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) with tripropylamine (TPrA) as the co-reactant. Here we present a detailed protocol for preparing Ru(bpy)32+ probes and their bioanalytical applications. This protocol includes (i) the synthesis of a biologically active Ru(bpy)32+-N-hydroxysuccinimide (NHS) ester, (ii) its covalent labeling with both antibodies and DNA probes and (iii) the detection and quantification of ECL in a microfluidic system with a paramagnetic microbead solid support. In our magnetic bead–based ECL system, two probes are required: a capture probe (labeled with biotin to be captured by a streptavidin-coated magnetic bead) and a detector probe (labeled with Ru(bpy)32+). The complex consisting of the analyte, the capture probe, the detector probe and the magnetic bead is brought into contact with the electrode by using a magnetic field. The Ru(bpy)32+ reacts with TPrA in solution to generate the ECL signal. The full protocol, including the synthesis and labeling of the bioactive Ru(bpy)32+, requires 5–6 d to complete. ECL immunoassays or nucleic acid tests only require 1.5–2 h, including the sample preparation time.


Biosensors and Bioelectronics | 2014

Visual and sensitive detection of viable pathogenic bacteria by sensing of RNA markers in gold nanoparticles based paper platform

Hongxing Liu; Fangfang Zhan; Fang Liu; Minjun Zhu; Xiaoming Zhou; Da Xing

Food-borne pathogens have been recognized as a major cause of human infections worldwide. Their identification needs to be simpler, cheaper and more reliable than the traditional methods. Here, we constructed a low-cost paper platform for viable pathogenic bacteria detection with the naked eye. In this study, an effective isothermal amplification method was used to amplify the hlyA mRNA gene, a specific RNA marker in Listeria monocytogenes. The amplification products were applied to the paper-based platform to perform a visual test using sandwich hybridization assays. When the RNA products migrated along the platform by capillary action, the gold nanoparticles accumulated at the designated area. Under optimized experimental conditions, as little as 0.5 pg/μL genomic RNA from L. monocytogenes could be detected. It could also be used to specifically detect 20 CFU/mL L. monocytogenes from actual samples. The whole assay process, including RNA extraction, amplification, and visualization, can be completed within several hours. This method is suitable for point-of-care applications to detect food-borne pathogens, as it can overcome the false-positive results caused by amplifying nonviable L. monocytogenes. Furthermore, the results can be imaged and transformed into a two-dimensional bar code through an Android-based smart phone for further analysis or in-field food safety tracking.


Biosensors and Bioelectronics | 2017

Quantum dots-labeled strip biosensor for rapid and sensitive detection of microRNA based on target-recycled nonenzymatic amplification strategy.

Huaping Deng; Qianwen Liu; Xin Wang; Ru Huang; Hongxing Liu; Qiumei Lin; Xiaoming Zhou; Da Xing

MicroRNAs (miRNAs) have been proved to be potential biomarkers in early cancer diagnosis. It is of great significance for rapid and sensitive detection of miRNAs, particularly with point-of-care (POC) diagnosis. Herein, it is the first time to construct quantum dots (QDs)-labeled strip biosensor based on target-recycled nonenzymatic amplification strategy for miRNA detection. In the system, QDs were served as bright, photostable signal labels, which endow this biosensor with good detection efficiency. Moreover, a target-recycled amplification strategy relies on sequence-specific hairpins strand displacement process without the assistance of enzymes, was introduced to further improve the sensitivity. Meanwhile eliminating the requirement of environment-susceptible enzyme protein makes it easy to preserve and enhances the stability and reproducibility of this sensor. Benefiting from these outstanding characteristics, this platform exhibited a good detection sensitivity range from 2fmol to 200fmol with a limit of 200amol, using only 20μL of sample within 80min. The assay was also 10-fold more sensitive than that with a conventional colloidal gold-based test strip for miRNA detection. Additionally, the analysis of miRNA in various tumor cell extracts was in accordance with the performance of quantitative realtime polymerase chain reaction (qRT-PCR). Clinical tumor samples were also tested, and 16 of 20 samples gave out positive signals, which demonstrated the practical application capacity of the biosensor. Therefore, the proposed biosensor holds great promise for potential POC applications and early cancer diagnosis.


Biosensors and Bioelectronics | 2016

Rapid and visual detection of Listeria monocytogenes based on nanoparticle cluster catalyzed signal amplification

Lisha Zhang; Ru Huang; Weipeng Liu; Hongxing Liu; Xiaoming Zhou; Da Xing

Foodborne pathogens pose a significant threat to human health worldwide. The identification of foodborne pathogens needs to be rapid, accurate and convenient. Here, we constructed a nanoparticle cluster (NPC) catalyzed signal amplification biosensor for foodborne pathogens visual detection. In this work, vancomycin (Van), a glycopeptide antibiotic for Gram-positive bacteria, was used as the first molecular recognition agent to capture Listeria monocytogenes (L. monocytogenes). Fe3O4 NPC modified aptamer, was used as the signal amplification nanoprobe, specifically recognize to the cell wall of L. monocytogenes. As vancomycin and aptamer recognize L. monocytogenes at different sites, the sandwich recognition showed satisfied specificity. Compared to individual Fe3O4 nanoparticle (NP), NPC exhibit collective effect-enhanced catalytic activity for the color reaction of chromogenic substrate. The change in absorbance or color could represent the concentration of target. Using the Fe3O4 NPC-based signal amplification method, L. monocytogenes whole cells could be directly assayed within a linear range of 5.4×10(3)-10(8) cfu/mL and a visual limit of detection of 5.4×10(3) cfu/mL. Fe3O4 NPC-based method was more sensitive than the Fe3O4 NP-based method. All these attractive characteristics of highly sensitivity, visual and labor-saving, make the biosensor possess a potential application for foodborne pathogenic bacteria detection.


ACS Applied Materials & Interfaces | 2014

Miniaturized paper-based gene sensor for rapid and sensitive identification of contagious plant virus.

Jitao Wei; Hongxing Liu; Fang Liu; Minjun Zhu; Xiaoming Zhou; Da Xing

Plant viruses cause significant production and economic losses in the agricultural industry worldwide. Rapid and early identification of contagious plant viruses is an essential prerequisite for the effective control of further spreading of infection. In this work, we describe a miniaturized paper-based gene sensor for the rapid and sensitive identification of a contagious plant virus. Our approach makes use of hybridization-mediated target capture based on a miniaturized lateral flow platform and gold nanoparticle colorimetric probes. The captured colorimetric probes on the test line and control line of the gene sensor produce characteristic red bands, enabling visual detection of the amplified products within minutes without the need for sophisticated instruments or the multiple incubation and washing steps performed in most other assays. Quantitative analysis is realized by recording the optical intensity of the test line. The sensor was used successfully for the identification of banana bunchy top virus (BBTV). The detection limit was 0.13 aM of gene segment, which is 10 times higher than that of electrophoresis and provides confirmation of the amplified products. We believe that this simple, rapid, and sensitive bioactive platform has great promise for warning against plant diseases in agricultural production.


ACS Applied Materials & Interfaces | 2017

Paperfluidic Chip Device for Small RNA Extraction, Amplification, and Multiplexed Analysis

Huaping Deng; Xiaoming Zhou; Qianwen Liu; Bofan Li; Hongxing Liu; Ru Huang; Da Xing

Small RNAs have been considered as potential biomarkers of various human diseases. Sensitive and multiplexed determination of small RNAs with point-of-care (POC) assay would be of great significance. Herein, an integrated paperfluidic chip device for multiplexed small RNA analysis was developed for the first time. In this system, the extraction and purification of small RNA was completed through a poly(ether sulfone) (PES) paper chip without the need for centrifugation. Subsequently, a newly designed hairpin probe-exponential amplification reaction (HP-EXPAR) was directly performed within the extraction paper chip. For the simultaneous realization of multiple detection, a multilayer paper chip was designed in a foldable manner with more portability and usability. Quantum dots (QDs) were employed as signal labels, which endowed this assay with high optical detection efficiency. Moreover, magnetic sheets were introduced as an alternative method for layer stacking, not only guaranteeing adjacent layers are in contact but also facilitating the sample dispersion. With these outstanding characteristics, our platform obtained a satisfactory sensitivity range from 3 × 105 to 3 × 108 copies with a limit of 3 × 106 copies. Additionally, the multiplex small RNA analyses from various cancer cells were in good agreement with the results of the real-time polymerase chain reaction (qRT-PCR). More importantly, simultaneous analysis of two types of miRNAs from clinical tumor samples demonstrated the clinical applicability of the system. Therefore, the proposed paper-based device shows great promise for POC applications in the future.


ieee international conference on photonics | 2014

Point of care nucleic acid detection of viable pathogenic bacteria with isothermal RNA amplification based paper biosensor

Hongxing Liu; Da Xing; Xiaoming Zhou

Food-borne pathogens such as Listeria monocytogenes have been recognized as a major cause of human infections worldwide, leading to substantial health problems. Food-borne pathogen identification needs to be simpler, cheaper and more reliable than the current traditional methods. Here, we have constructed a low-cost paper biosensor for the detection of viable pathogenic bacteria with the naked eye. In this study, an effective isothermal amplification method was used to amplify the hlyA mRNA gene, a specific RNA marker in Listeria monocytogenes. The amplification products were applied to the paper biosensor to perform a visual test, in which endpoint detection was performed using sandwich hybridization assays. When the RNA products migrated along the paper biosensor by capillary action, the gold nanoparticles accumulated at the designated Test line and Control line. Under optimized experimental conditions, as little as 0.5 pg/μL genomic RNA from Listeria monocytogenes could be detected. The whole assay process, including RNA extraction, amplification, and visualization, can be completed within several hours. The developed method is suitable for point-of-care applications to detect food-borne pathogens, as it can effectively overcome the false-positive results caused by amplifying nonviable Listeria monocytogenes.


Theranostics | 2018

Paper-based electrochemiluminescence sensor for highly sensitive detection of amyloid-β oligomerization: Toward potential diagnosis of Alzheimer's disease

Hongxing Liu; Xiaoming Zhou; Qi Shen; Da Xing

Development of a rapid and sensitive method for Aβ(1-42) aggregation detection is of great importance to overcome the limitations of conventional techniques. In this study, we developed a label-free paper-based electrochemiluminescence sensor for amyloid-β aggregation detection toward potential diagnosis of Alzheimers disease (AD). The paper-based chip used in the system serves as a low-cost and disposable detection method. In this detection platform, the bonding of [Ru(phen)2dppz]2+ to Aβ(1-42) aggregates results in enhanced electrochemiluminescence due to the change in the polarity of the microenvironment when [Ru(phen)2dppz]2+ intercalated into the β-sheets during oligomerization. The oligomerization process of Aβ(1-42) can be monitored in real time by the novel method, and as low as 100 pM equivalent monomer concentration of Aβ(1-42) could be detected simultaneously. In addition, the cerebrospinal fluid of transgenic AD model mice was tested by this method, which is highly consistent with genetic identification. In addition, we demonstrated that this detection platform could be a potential new method for the screening of Aβ(1-42) aggregation inhibitors, highlighting the practical application capacity of this platform. The platform is label free, low cost and sensitive. Therefore, the proposed platform holds great promise for the diagnosis of AD.


ACS Applied Materials & Interfaces | 2015

Construction of Fe3O4/Vancomycin/PEG Magnetic Nanocarrier for Highly Efficient Pathogen Enrichment and Gene Sensing.

Minjun Zhu; Weipeng Liu; Hongxing Liu; Yuhui Liao; Jitao Wei; Xiaoming Zhou; Da Xing


Analytical Chemistry | 2016

Paper-Based Bipolar Electrode Electrochemiluminescence Switch for Label-Free and Sensitive Genetic Detection of Pathogenic Bacteria

Hongxing Liu; Xiaoming Zhou; Weipeng Liu; Xiaoke Yang; Da Xing

Collaboration


Dive into the Hongxing Liu's collaboration.

Top Co-Authors

Avatar

Da Xing

South China Normal University

View shared research outputs
Top Co-Authors

Avatar

Xiaoming Zhou

South China Normal University

View shared research outputs
Top Co-Authors

Avatar

Weipeng Liu

South China Normal University

View shared research outputs
Top Co-Authors

Avatar

Jitao Wei

South China Normal University

View shared research outputs
Top Co-Authors

Avatar

Minjun Zhu

South China Normal University

View shared research outputs
Top Co-Authors

Avatar

Ru Huang

South China Normal University

View shared research outputs
Top Co-Authors

Avatar

Fang Liu

South China Normal University

View shared research outputs
Top Co-Authors

Avatar

Huaping Deng

South China Normal University

View shared research outputs
Top Co-Authors

Avatar

Yuhui Liao

South China Normal University

View shared research outputs
Top Co-Authors

Avatar

Fangfang Zhan

South China Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge