Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hongxu Lu is active.

Publication


Featured researches published by Hongxu Lu.


Expert Opinion on Biological Therapy | 2010

Decellularized matrices for tissue engineering

Takashi Hoshiba; Hongxu Lu; Naoki Kawazoe; Guoping Chen

Importance of the field: Biomimetic scaffolds and substrates of extracellular matrices (ECMs) play an important role in the regulation of cell function and in the guidance of new tissue regeneration, as an ECM has the intrinsic cues necessary to communicate with and dictate to cells. Areas covered in this review: This paper reviews the latest developments in ECM scaffolds and substrates obtained from decellularized tissues, organs or cultured cells and their application in tissue engineering. The ECM composition, structure, interaction with surrounding cells, preparation method and usage in the regeneration of various tissues and organs are summarised. What the reader will gain: The advantages and challenges of decellularized matrices are highlighted. Take home message: Similarity in the composition, microstructure and biomechanical properties of the decellularized scaffolds and substrates to those of the native tissues and organs maximizes the promotion effect in the regeneration of both structural and functional tissues and organs. Simple tissues as well as complicated organs have been decellularized and decellularization methods have been optimized to completely remove the cellular components while keeping the ECM intact.


Acta Biomaterialia | 2012

Silicate bioceramics induce angiogenesis during bone regeneration.

Wanyin Zhai; Hongxu Lu; Lei Chen; Xiaoting Lin; Yan Huang; Kerong Dai; Kawazoe Naoki; Guoping Chen; Jiang Chang

The capacity to induce rapid vascular ingrowth during new bone formation is an important feature of biomaterials that are to be used for bone regeneration. Akermanite, a Ca-, Mg- and Si-containing bioceramic, has been demonstrated to be osteoinductive and to promote bone repair. This study further demonstrates the ability of akermanite to promote angiogenesis and investigates the mechanism of this behavior. The akermanite ion extract predominantly caused Si-ion-stimulated proliferation of human aortic endothelial cells. The Si ion in the extract was the most important component for the effect and the most effective concentration was found to be 0.6-2 μg ml(-1). In this range of Si ion concentration, the stimulating effect of the ceramic ion extract was demonstrated by the morphology of cells at the primary, interim and late stages during in vitro angiogenesis using ECMatrix™. The akermanite ion extract up-regulated the expression of genes encoding the receptors of proangiogenic cytokines and also increased the expression level of genes encoding the proangiogenic downstream cytokines, such as nitric oxide synthase and nitric oxide synthesis. Akermanite implanted in rabbit femoral condyle model promoted neovascularization after 8 and 16 weeks of implantation, which further confirmed its stimulation effect on angiogenesis in vivo. These results indicate that akermanite ceramic, an appropriate Si ion concentration source, could induce angiogenesis through increasing gene expression of proangiogenic cytokine receptors and up-regulated downstream signaling. To our knowledge, akermanite ceramic is the first Si-containing ceramic demonstrated to be capable of inducing angiogenesis during bone regeneration.


Biomaterials | 2011

Cultured cell-derived extracellular matrix scaffolds for tissue engineering.

Hongxu Lu; Takashi Hoshiba; Naoki Kawazoe; Ichie Koda; Minghui Song; Guoping Chen

Cell-derived extracellular matrix (ECM) scaffolds have received considerable interest for tissue engineering applications. In this study, ECM scaffolds derived from mesenchymal stem cell (MSC), chondrocyte, and fibroblast were prepared by culturing cells in a selectively removable poly(lactic-co-glycolic acid) (PLGA) template. These three types of ECM scaffolds were used for in vitro cultures of MSC and fibroblasts to examine their potential as scaffolds for cartilage and skin tissue engineering. The MSC were cultured in MSC- and chondrocyte-derived ECM scaffolds. The ECM scaffolds supported cell adhesion, promoted both cell proliferation and the production of ECM and demonstrated a stronger stimulatory effect on the chondrogenesis of MSC compared with a conventional pellet culture method. Histological and immunohistochemical staining indicated that cartilage-like tissues were regenerated after the MSC were cultured in ECM scaffolds. Fibroblasts were cultured in the fibroblast-derived ECM scaffolds. Fibroblasts proliferated and produced ECM to fill the pores and spaces in the scaffold. After 2 weeks of culture, a uniform multilayered tissue was generated with homogenously distributed fibroblasts. Cell-derived ECM scaffolds have been demonstrated to facilitate tissue regeneration and will be a useful tool for tissue engineering.


Acta Biomaterialia | 2014

Pore size effect of collagen scaffolds on cartilage regeneration

Qin Zhang; Hongxu Lu; Naoki Kawazoe; Guoping Chen

Scaffold pore size is an important factor affecting tissue regeneration efficiency. The effect of pore size on cartilage tissue regeneration was compared by using four types of collagen porous scaffolds with different pore sizes. The collagen porous scaffolds were prepared by using pre-prepared ice particulates that had diameters of 150-250, 250-355, 355-425 and 425-500μm. All the scaffolds had spherical large pores with good interconnectivity and high porosity that facilitated cell seeding and spatial cell distribution. Chondrocytes adhered to the walls of the spherical pores and showed a homogeneous distribution throughout the scaffolds. The in vivo implantation results indicated that the pore size did not exhibit any obvious effect on cell proliferation but exhibited different effects on cartilage regeneration. The collagen porous scaffolds prepared with ice particulates 150-250μm in size best promoted the expression and production of type II collagen and aggrecan, increasing the formation and the mechanical properties of the cartilage.


Acta Biomaterialia | 2013

Stimulatory effects of the ionic products from Ca-Mg-Si bioceramics on both osteogenesis and angiogenesis in vitro.

Wanyin Zhai; Hongxu Lu; Chengtie Wu; Lei Chen; Xiaoting Lin; Kawazoe Naoki; Guoping Chen; Jiang Chang

Ideal biomaterials for bone tissue engineering should have the capability to guide the osteogenic differentiation of mesenchymal stem cells and, at the same time, to stimulate angiogenesis of endothelia cells. In this study it was found that three Ca-Mg-Si-containing bioceramics (bredigite Ca7MgSi4O16, akermanite Ca2MgSi2O7 and diopside CaMgSi2O6) had osteogenic and angiogenic potential. The effects of three silicate ceramics on the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) and the angiogenesis of human aortic endothelial cells (HAECs) were explored in comparison with β-tricalcium phosphate (β-TCP) bioceramics. The proliferation, alkaline phosphatase (ALPase) activity and bone-related gene expression (COL1, ALPase, OP, BSP and OC) of hBMSCs were significantly enhanced upon stimulation with ionic extracts of these silicate bioceramics. In addition, the results showed that extracts from the three silicate bioceramics also stimulated HAEC proliferation and in vitro angiogenesis with improved NO synthesis and angiogenic gene expression (KDR, FGFR1, ACVRL1 and NOS3). Among the three silicate ceramics bredigite showed the highest osteogenic and angiogenic potential and with the highest extract Si (possibly Si(OH)3O(-)) concentration, while diopside had the lowest osteogenic and angiogenic potential with the lowest extract Si concentration. Furthermore, it was found that the concentration of Si ions in extracts of the three silicate bioceramics was obviously higher than that of β-TCP ceramics, indicating an important role of Si ions in stimulating cell proliferation, osteogenic differentiation and angiogenesis. The results suggest that the silicate-based akermanite and bredigite ceramics might be good scaffold biomaterials for bone tissue engineering applications due to their distinctive dual functions of osteogenesis/angiogenesis stimulation.


Biomacromolecules | 2013

Folate Conjugation to Polymeric Micelles via Boronic Acid Ester to Deliver Platinum Drugs to Ovarian Cancer Cell Lines

Wei Scarano; Hien T. T. Duong; Hongxu Lu; Paul de Souza; Martina H. Stenzel

In this study, a novel technique was used for the reversible attachment of folic acid on the surface of polymeric micelles for a tumor-specific drug delivery system. The reversible conjugation is based on the interaction between phenylboronic acid (PBA) and dopamine to form a borate ester. The conjugation is fast and efficient and in vitro experiments via confocal fluorescent microscopy show that the linker is stable in for several hours. Reversible addition-fragmentation chain transfer (RAFT) polymerization was used to synthesize two various sized water-soluble block copolymer of oligoethylene glycol methylether methacylate and methyl acrylic acid (POEGMEMA(35)-b-PMAA(200) and POEGMEMA(26)-b-PMAA(90)). The platinum drug, oxoplatin, was then subsequently attached to the polymer via ester formation leading to platinum loading of 12 wt % as determined by TGA. The platinum-induced amphiphilic block copolymers that consequently led to the formation of micelles of sizes 150 and 20 nm in an aqueous environment with the longer PMAA block forming larger micelles. The small micelles were in addition cross-linked using 1,8-diaminooctane to further stabilize their structure. The targeting ability of folate conjugated polymeric micelles was investigated against two types of tumor cell lines: A549 (-FR) and OVCAR-3 (+FR). The cell line growth inhibitory efficacy of material synthesized was evaluated by using SRB method. The results revealed that folate conjugated micelles showed higher activity in FR + OVCAR-3 cells but not in FR - A549 cells. Similar results were obtained for both small and large micelles without the conjugation of folate. Comparing large and small micelles it can be observed that larger micelles are more efficient, which has been attributed to the lower stability of the smaller micelles. Micelle stabilization via cross-linking could indeed increase the toxicity of the drug carrier.


Biomaterials | 2010

Cartilage tissue engineering using funnel-like collagen sponges prepared with embossing ice particulate templates.

Hongxu Lu; Young-Gwang Ko; Naoki Kawazoe; Guoping Chen

Three-dimensional porous scaffolds of collagen have been widely used for tissue engineering and regenerative medicine. In this study, we fabricated funnel-like collagen sponges with open surface pore structures by a freeze-drying method that used embossing ice particulates as a template. By controlling the size of the ice particulates and the temperature of freezing, collagen sponges with different pore structures were prepared. To investigate the effects of different pore structures on cartilage regeneration, the funnel-like collagen sponges were used to culture bovine articular chondrocytes. Scaffolds that were prepared with 400microm ice particulate templates and a freezing temperature of -3 degrees C resulted in the best cell distribution, ECM production, and chondrogenesis. Although funnel-like collagen sponges prepared with 400microm ice particulate templates and a freezing temperature of -1 degrees C and 720microm ice particulates and a freezing temperature of -3 degrees C, showed even cell distribution, the cell seeding efficiencies and sGAG amount per cell were low. However, the scaffolds prepared with 400microm ice particulate templates and a freezing temperature of -5 degrees C or -10 degrees C showed a limited effect on the improvement of cell distribution and chondrogenesis. Control collagen sponges without ice particulates failed to support the formation of homogenous cartilage-like tissue. These results indicate that funnel-like collagen sponges were superior to control collagen sponges and that scaffolds prepared with 400microm ice particulate templates at -3 degrees C were optimal for cartilage tissue engineering.


Langmuir | 2011

Adipogenic differentiation of individual mesenchymal stem cell on different geometric micropatterns.

Wei Song; Hongxu Lu; Naoki Kawazoe; Guoping Chen

Micropatterned surfaces are very useful to control cell microenvironment and investigate the physical effects on cell function. In this study, poly(vinyl alcohol) (PVA) micropatterns on polystyrene cell-culture plates were prepared using UV photolithography. Cell adhesive polystyrene geometries of triangle, square, pentagon, hexagon, and circle were surrounded by cell nonadhesive PVA to manipulate cell shapes. These different geometries had the same small surface areas for cell spreading. Human mesenchymal stem cells (MSCs) were cultured on the micropatterned surface, and the effect of cell geometry on adipogenic differentiation was investigated. MSCs adhered to the geometric micropatterns and formed arrays of single cell with different shapes. The distribution patterns of actin filaments were similar among these cell shapes and remolded during adipogenesis. The adipogenic differentiation potential of MSCs was similar on the small size triangular, square, pentagonal, hexagonal, and circular geometries according to lipid vacuoles staining. This simple micropatterning technique using photoreactive molecules will be useful for creating micropatterns of arbitrary design on an organic surface, and cell functions can be directly and systematically compared on a single surface without external factors resulting from separate cell culture and coating method.


Biomaterials | 2012

Spatial immobilization of bone morphogenetic protein-4 in a collagen-PLGA hybrid scaffold for enhanced osteoinductivity

Hongxu Lu; Naoki Kawazoe; Takashi Kitajima; Yuka Myoken; Masahiro Tomita; Akihiro Umezawa; Guoping Chen; Yoshihiro Ito

The introduction of bioactive molecules into three-dimensional porous scaffolds to mimic the in vivo microenvironment is a promising strategy for tissue engineering and stem cell research. In this study, bone morphogenetic protein-4 (BMP4) was spatially immobilized in a collagen-PLGA hybrid scaffold with a fusion BMP4 composed of an additional collagen-binding domain derived from fibronectin (CBD-BMP4). CBD-BMP4 bound to the collagen-PLGA hybrid scaffold and the BMP4-immobilized hybrid scaffold supported cell adhesion and proliferation. The osteogenic induction effect of the immobilized CBD-BMP4 was investigated with three-dimensional culture of human bone marrow-derived mesenchymal stem cells in the BMP4-immobilized collagen-PLGA hybrid scaffold. The in vivo implantation experiment demonstrated that the immobilized CBD-BMP4 maintained its osteoinductive activity, being capable of up-regulating osteogenic gene expression and biomineralization. The strong osteoinductivity of the BMP4-immobilized scaffold suggests it should be useful for bone tissue engineering, stem cell function manipulation and bone substitutes.


Journal of Biomaterials Applications | 2010

In vitro Proliferation and Osteogenic Differentiation of Human Bone Marrow-derived Mesenchymal Stem Cells Cultured with Hardystonite (Ca2ZnSi 2O7) and β-TCP Ceramics:

Hongxu Lu; Naoki Kawazoe; Tetsuya Tateishi; Guoping Chen; Xiaogang Jin; Jiang Chang

The effects of hardystonite (Ca2ZnSi2O7, CSZn) and tricalcium phosphate (β-TCP) on the proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (MSCs) were compared by directly culturing MSCs on ceramic disks (contact mode) or separately culturing cells with ceramic disks (non-contact mode). In non-contact mode, the CSZn ceramic supported MSC proliferation more strongly than did the β-TCP ceramic. However, in contact mode, the MSCs proliferated more quickly on the β-TCP ceramic than they did on the CSZn ceramic. Alkaline phosphatase (ALP) staining and osteogenic gene expression analysis showed that the CSZn and β-TCP ceramics had significant effects on the promotion of the osteogenic differentiation of MSCs in both non-contact and contact mode. Furthermore, in contact mode, the CSZn disk promoted the osteogenic differentiation of MSCs more strongly than did the β-TCP disks. Even without the induction of dexamethasone and β-glycerophosphate, CSZn stimulated the osteogenic differentiation of MSCs. These results suggest that CSZn ceramic would be a useful candidate material for bone regeneration and hard tissue engineering.

Collaboration


Dive into the Hongxu Lu's collaboration.

Top Co-Authors

Avatar

Martina H. Stenzel

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Guoping Chen

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar

Naoki Kawazoe

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar

Jiacheng Zhao

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pu Xiao

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Aydan Dag

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Takashi Hoshiba

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar

Mingxia Lu

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Christopher Barner-Kowollik

Queensland University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge