Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hongye Liu is active.

Publication


Featured researches published by Hongye Liu.


Cancer Discovery | 2016

Obesity-induced inflammation and desmoplasia promote pancreatic cancer progression and resistance to chemotherapy

Joao Incio; Hongye Liu; Priya Suboj; Shanmin Chin; Ivy Chen; Matthias Pinter; Mei R. Ng; Hadi Tavakoli Nia; Jelena Grahovac; Kao S; Suboj Babykutty; Yuhui Huang; Keehoon Jung; Nuh N. Rahbari; Xiaoxing Han; Vikash P. Chauhan; John D. Martin; Julia Kahn; Peigen Huang; Desphande; James S. Michaelson; Theodoros Michelakos; Cristina R. Ferrone; Raquel Soares; Yves Boucher; Dai Fukumura; Rakesh K. Jain

UNLABELLED It remains unclear how obesity worsens treatment outcomes in patients with pancreatic ductal adenocarcinoma (PDAC). In normal pancreas, obesity promotes inflammation and fibrosis. We found in mouse models of PDAC that obesity also promotes desmoplasia associated with accelerated tumor growth and impaired delivery/efficacy of chemotherapeutics through reduced perfusion. Genetic and pharmacologic inhibition of angiotensin-II type-1 receptor reverses obesity-augmented desmoplasia and tumor growth and improves response to chemotherapy. Augmented activation of pancreatic stellate cells (PSC) in obesity is induced by tumor-associated neutrophils (TAN) recruited by adipocyte-secreted IL1β. PSCs further secrete IL1β, and inactivation of PSCs reduces IL1β expression and TAN recruitment. Furthermore, depletion of TANs, IL1β inhibition, or inactivation of PSCs prevents obesity-accelerated tumor growth. In patients with pancreatic cancer, we confirmed that obesity is associated with increased desmoplasia and reduced response to chemotherapy. We conclude that cross-talk between adipocytes, TANs, and PSCs exacerbates desmoplasia and promotes tumor progression in obesity. SIGNIFICANCE Considering the current obesity pandemic, unraveling the mechanisms underlying obesity-induced cancer progression is an urgent need. We found that the aggravation of desmoplasia is a key mechanism of obesity-promoted PDAC progression. Importantly, we discovered that clinically available antifibrotic/inflammatory agents can improve the treatment response of PDAC in obese hosts. Cancer Discov; 6(8); 852-69. ©2016 AACR.See related commentary by Bronte and Tortora, p. 821This article is highlighted in the In This Issue feature, p. 803.


JCI insight | 2016

Low-dose IL-2 selectively activates subsets of CD4+ Tregs and NK cells

Masahiro Hirakawa; Tiago R. Matos; Hongye Liu; John Koreth; Haesook T. Kim; Nicole E. Paul; Kazuyuki Murase; Jennifer Whangbo; Ana Cristina Alho; Sarah Nikiforow; Corey Cutler; Vincent T. Ho; Philippe Armand; Edwin P. Alyea; Joseph H. Antin; Bruce R. Blazar; João F. Lacerda; Robert J. Soiffer; Jerome Ritz

CD4+ regulatory T cells (CD4Tregs) play a critical role in the maintenance of immune tolerance and prevention of chronic graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation. IL-2 supports the proliferation and survival of CD4Tregs and previous studies have demonstrated that IL-2 induces selective expansion of CD4Tregs and improves clinical manifestations of chronic GVHD. However, mechanisms for selective activation of CD4Tregs and the effects of low-dose IL-2 on other immune cells are not well understood. Using mass cytometry, we demonstrate that low concentrations of IL-2 selectively induce STAT5 phosphorylation in Helios+ CD4Tregs and CD56brightCD16- NK cells in vitro. Preferential activation and expansion of Helios+ CD4Tregs and CD56brightCD16- NK cells was also demonstrated in patients with chronic GVHD receiving low-dose IL-2. With prolonged IL-2 treatment for 48 weeks, phenotypic changes were also observed in Helios- CD4Tregs. The effects of low-dose IL-2 therapy on conventional CD4+ T cells and CD8+ T cells were limited to increased expression of PD-1 on effector memory T cells. These studies reveal the selective effects of low-dose IL-2 therapy on Helios+ CD4Tregs and CD56bright NK cells that constitutively express high-affinity IL-2 receptors as well as the indirect effects of prolonged exposure to low concentrations of IL-2 in vivo.


Cancer Discovery | 2017

Ex Vivo Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids

Russell W. Jenkins; Amir R. Aref; Patrick H. Lizotte; Elena Ivanova; Susanna Stinson; Chensheng W. Zhou; Michaela Bowden; Jiehui Deng; Hongye Liu; Diana Miao; Meng Xiao He; William F. Walker; Gao Zhang; Tian Tian; Chaoran Cheng; Zhi Wei; Sangeetha Palakurthi; Mark Bittinger; Hans Vitzthum; Jong Wook Kim; Ashley A. Merlino; Max M. Quinn; Chandrasekar Venkataramani; Joshua A. Kaplan; Andrew Portell; Prafulla C. Gokhale; Bart Phillips; Alicia Smart; Asaf Rotem; Robert E. Jones

Ex vivo systems that incorporate features of the tumor microenvironment and model the dynamic response to immune checkpoint blockade (ICB) may facilitate efforts in precision immuno-oncology and the development of effective combination therapies. Here, we demonstrate the ability to interrogate ex vivo response to ICB using murine- and patient-derived organotypic tumor spheroids (MDOTS/PDOTS). MDOTS/PDOTS isolated from mouse and human tumors retain autologous lymphoid and myeloid cell populations and respond to ICB in short-term three-dimensional microfluidic culture. Response and resistance to ICB was recapitulated using MDOTS derived from established immunocompetent mouse tumor models. MDOTS profiling demonstrated that TBK1/IKKε inhibition enhanced response to PD-1 blockade, which effectively predicted tumor response in vivo Systematic profiling of secreted cytokines in PDOTS captured key features associated with response and resistance to PD-1 blockade. Thus, MDOTS/PDOTS profiling represents a novel platform to evaluate ICB using established murine models as well as clinically relevant patient specimens.Significance: Resistance to PD-1 blockade remains a challenge for many patients, and biomarkers to guide treatment are lacking. Here, we demonstrate feasibility of ex vivo profiling of PD-1 blockade to interrogate the tumor immune microenvironment, develop therapeutic combinations, and facilitate precision immuno-oncology efforts. Cancer Discov; 8(2); 196-215. ©2017 AACR.See related commentary by Balko and Sosman, p. 143See related article by Deng et al., p. 216This article is highlighted in the In This Issue feature, p. 127.


Cancer immunology research | 2016

Cytotoxic T Cells in PD-L1–Positive Malignant Pleural Mesotheliomas Are Counterbalanced by Distinct Immunosuppressive Factors

Mark M. Awad; Robert E. Jones; Hongye Liu; Patrick H. Lizotte; Elena Ivanova; Meghana M. Kulkarni; Grit S. Herter-Sprie; Xiaoyun Liao; Abigail Santos; Mark Bittinger; Lauren Keogh; Shohei Koyama; Christina G. Almonte; Jessie M. English; Julianne C Barlow; William G. Richards; David A. Barbie; Adam J. Bass; Scott J. Rodig; F.S. Hodi; Kai W. Wucherpfennig; Pasi A. Jänne; Lynette M. Sholl; Peter S. Hammerman; Kwok-Kin Wong; Raphael Bueno

In malignant pleural mesothelioma, immunohistochemical expression of PD-L1 does not accurately predict whether patients respond to treatment with PD-1 pathway inhibitors. Comprehensive immunoprofiling by flow cytometry uncovered immunophenotypes that improve our understanding of response and resistance to checkpoint blockade. PD-L1 immunohistochemical staining does not always predict whether a cancer will respond to treatment with PD-1 inhibitors. We sought to characterize immune cell infiltrates and the expression of T-cell inhibitor markers in PD-L1–positive and PD-L1–negative malignant pleural mesothelioma samples. We developed a method for immune cell phenotyping using flow cytometry on solid tumors that have been dissociated into single-cell suspensions and applied this technique to analyze 43 resected malignant pleural mesothelioma specimens. Compared with PD-L1–negative tumors, PD-L1–positive tumors had significantly more infiltrating CD45+ immune cells, a significantly higher proportion of infiltrating CD3+ T cells, and a significantly higher percentage of CD3+ cells displaying the activated HLA-DR+/CD38+ phenotype. PD-L1–positive tumors also had a significantly higher proportion of proliferating CD8+ T cells, a higher fraction of FOXP3+/CD4+ Tregs, and increased expression of PD-1 and TIM-3 on CD4+ and CD8+ T cells. Double-positive PD-1+/TIM-3+ CD8+ T cells were more commonly found on PD-L1–positive tumors. Compared with epithelioid tumors, sarcomatoid and biphasic mesothelioma samples were significantly more likely to be PD-L1 positive and showed more infiltration with CD3+ T cells and PD-1+/TIM-3+ CD8+ T cells. Immunologic phenotypes in mesothelioma differ based on PD-L1 status and histologic subtype. Successful incorporation of comprehensive immune profiling by flow cytometry into prospective clinical trials could refine our ability to predict which patients will respond to specific immune checkpoint blockade strategies. Cancer Immunol Res; 4(12); 1038–48. ©2016 AACR.


Cancer Discovery | 2017

CDK4/6 Inhibition Augments Antitumor Immunity by Enhancing T-cell Activation

Jiehui Deng; Eric S. Wang; Russell W. Jenkins; Shuai Li; Ruben Dries; Kathleen Yates; Sandeep Chhabra; Wei Huang; Hongye Liu; Amir R. Aref; Elena Ivanova; Cloud P. Paweletz; Michaela Bowden; Chensheng W. Zhou; Grit S. Herter-Sprie; Jessica A. Sorrentino; John E. Bisi; Patrick H. Lizotte; Ashley A. Merlino; Max M. Quinn; Lauren E. Bufe; Annan Yang; Yanxi Zhang; Hua Zhang; Peng Gao; Ting Chen; Megan E. Cavanaugh; Amanda J. Rode; Eric Haines; Patrick J. Roberts

Immune checkpoint blockade, exemplified by antibodies targeting the PD-1 receptor, can induce durable tumor regressions in some patients. To enhance the efficacy of existing immunotherapies, we screened for small molecules capable of increasing the activity of T cells suppressed by PD-1. Here, we show that short-term exposure to small-molecule inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) significantly enhances T-cell activation, contributing to antitumor effects in vivo, due in part to the derepression of NFAT family proteins and their target genes, critical regulators of T-cell function. Although CDK4/6 inhibitors decrease T-cell proliferation, they increase tumor infiltration and activation of effector T cells. Moreover, CDK4/6 inhibition augments the response to PD-1 blockade in a novel ex vivo organotypic tumor spheroid culture system and in multiple in vivo murine syngeneic models, thereby providing a rationale for combining CDK4/6 inhibitors and immunotherapies.Significance: Our results define previously unrecognized immunomodulatory functions of CDK4/6 and suggest that combining CDK4/6 inhibitors with immune checkpoint blockade may increase treatment efficacy in patients. Furthermore, our study highlights the critical importance of identifying complementary strategies to improve the efficacy of immunotherapy for patients with cancer. Cancer Discov; 8(2); 216-33. ©2017 AACR.See related commentary by Balko and Sosman, p. 143See related article by Jenkins et al., p. 196This article is highlighted in the In This Issue feature, p. 127.


Scientific Reports | 2016

Fine needle aspirate flow cytometric phenotyping characterizes immunosuppressive nature of the mesothelioma microenvironment

Patrick H. Lizotte; Robert E. Jones; Lauren Keogh; Elena P. Ivanova; Hongye Liu; Mark M. Awad; Peter S. Hammerman; Ritu R. Gill; William G. Richards; David A. Barbie; Adam J. Bass; Raphael Bueno; Jessie M. English; Mark Bittinger; Kwok-Kin Wong

With the emergence of checkpoint blockade and other immunotherapeutic drugs, and the growing adoption of smaller, more flexible adaptive clinical trial designs, there is an unmet need to develop diagnostics that can rapidly immunophenotype patient tumors. The ability to longitudinally profile the tumor immune infiltrate in response to immunotherapy also presents a window of opportunity to illuminate mechanisms of resistance. We have developed a fine needle aspirate biopsy (FNA) platform to perform immune profiling on thoracic malignancies. Matching peripheral blood, bulk resected tumor, and FNA were analyzed from 13 mesothelioma patients. FNA samples yielded greater numbers of viable cells when compared to core needle biopsies. Cell numbers were adequate to perform flow cytometric analyses on T cell lineage, T cell activation and inhibitory receptor expression, and myeloid immunosuppressive checkpoint markers. FNA samples were representative of the tumor as a whole as assessed by head-to-head comparison to single cell suspensions of dissociated whole tumor. Parallel analysis of matched patient blood enabled us to establish quality assurance criteria to determine the accuracy of FNA procedures to sample tumor tissue. FNA biopsies provide a diagnostic to rapidly phenotype the tumor immune microenvironment that may be of great relevance to clinical trials.


Oral Oncology | 2017

Defining an inflamed tumor immunophenotype in recurrent, metastatic squamous cell carcinoma of the head and neck

Glenn J. Hanna; Hongye Liu; Robert E. Jones; Alyssa F. Bacay; Patrick H. Lizotte; Elena Ivanova; Mark Bittinger; Megan E. Cavanaugh; Amanda J. Rode; Jonathan D. Schoenfeld; Nicole G. Chau; Robert I. Haddad; Jochen H. Lorch; Kwok-Kin Wong; Ravindra Uppaluri; Peter S. Hammerman

OBJECTIVES Immune checkpoint inhibitors have demonstrated clinical benefit in recurrent, metastatic (R/M) squamous cell carcinoma of the head and neck (SSCHN), but lacking are biomarkers that predict response. We sought to define an inflamed tumor immunophenotype in this R/M SCCHN population and correlate immune metrics with clinical parameters and survival. METHODS Tumor samples were prospectively acquired from 34 patients to perform multiparametric flow cytometry and multidimensional clustering analysis integrated with next-generation sequencing data, clinical parameters and outcomes. RESULTS We identified an inflamed subgroup of tumors with prominent CD8+ T cell infiltrates and high PD-1/TIM3 co-expression independent of clinical variables, with improved survival compared with a non-inflamed subgroup (median overall survival 84.0 vs. 13.0months, p=0.004). The non-inflamed subgroup demonstrated low CD8+ T cells, low PD-1/TIM3 co-expression, and higher Tregs. Overall non-synonymous mutational burden did not correlate with response to PD-1 blockade in a subset of patients. CONCLUSION R/M SCCHN patients with an inflamed tumor immunophenotype demonstrate improved survival. Further prospective studies are needed to validate these findings and explore the use of immunophenotype to guide patient selection for immunotherapeutic approaches.


Journal of Investigative Dermatology | 2017

Research Techniques Made Simple: Mass Cytometry Analysis Tools for Decrypting the Complexity of Biological Systems

Tiago R. Matos; Hongye Liu; Jerome Ritz

Mass cytometry by time-of-flight experiments allow analysis of over 40 functional and phenotypic cellular markers simultaneously at the single-cell level. The data dimensionality escalation accentuates limitations, inherent to manual analysis, as being subjective, labor-intensive, slow, and often incapable of showing the detailed features of each unique cell within populations. The subsequent challenge of examining, visualizing, and presenting mass cytometry data has motivated continuous development of dimensionality reduction methods. As a result, an increasing recognition of the inherent diversity and complexity of cellular networks is emerging, with the discovery of unexpected cell subpopulations, hierarchies, and developmental pathways, such as those existing within the immune system. Here, we briefly review some frequently used and accessible mass cytometry data analysis tools, including principal component analysis (PCA); spanning-tree progression analysis of density-normalized events (SPADE); t-distributed stochastic neighbor embedding (t-SNE)-based visualization (viSNE); automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE); and cluster identification, characterization, and regression (CITRUS). Mass cytometry, used together with these innovative analytic tools, has the power to lead to key discoveries in investigative dermatology, including but not limited to identifying signaling phenotypes with predictive value for early diagnosis, prognosis, or relapse and a thorough characterization of intratumor heterogeneity and disease-resistant cell populations, that may ultimately unveil novel therapeutic approaches.


JCI insight | 2016

Multiparametric profiling of non–small-cell lung cancers reveals distinct immunophenotypes

Patrick H. Lizotte; Elena Ivanova; Mark M. Awad; Robert E. Jones; Lauren Keogh; Hongye Liu; Ruben Dries; Christina G. Almonte; Grit S. Herter-Sprie; Abigail Santos; Nora Feeney; Cloud P. Paweletz; Meghana M. Kulkarni; Adam J. Bass; Anil K. Rustgi; Guo-Cheng Yuan; Donald Kufe; Pasi A. Jänne; Peter S. Hammerman; Lynette M. Sholl; F. Stephen Hodi; William G. Richards; Raphael Bueno; Jessie M. English; Mark Bittinger; Kwok-Kin Wong


Journal of Investigative Dermatology | 2017

Research Techniques Made Simple: Experimental Methodology for Single-Cell Mass Cytometry

Tiago R. Matos; Hongye Liu; Jerome Ritz

Collaboration


Dive into the Hongye Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge