Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hongyue Dang is active.

Publication


Featured researches published by Hongyue Dang.


Applied and Environmental Microbiology | 2000

Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes

Hongyue Dang; Charles R. Lovell

ABSTRACT The nearly universal colonization of surfaces in marine waters by bacteria and the formation of biofilms and biofouling communities have important implications for ecological function and industrial processes. However, the dynamics of surface attachment and colonization in situ, particularly during the early stages of biofilm establishment, are not well understood. Experimental surfaces that differed in their degrees of hydrophilicity or hydrophobicity were incubated in a salt marsh estuary tidal creek for 24 or 72 h. The organisms colonizing these surfaces were examined by using a cultivation-independent approach, amplified ribosomal DNA restriction analysis. The goals of this study were to assess the diversity of bacterial colonists involved in early succession on a variety of surfaces and to determine the phylogenetic affiliations of the most common early colonists. Substantial differences in the representation of different cloned ribosomal DNA sequences were found when the 24- and 72-h incubations were compared, indicating that some new organisms were recruited and some other organisms were lost. Phylogenetic analyses of the most common sequences recovered showed that the colonists were related to organisms known to inhabit surfaces or particles in marine systems. A total of 22 of the 26 clones sequenced were affiliated with theRoseobacter subgroup of the α subdivision of the divisionProteobacteria (α-Proteobacteria), and most of these clones were recovered at a high frequency from all surfaces after 24 or 72 h of incubation. Two clones were affiliated with the Alteromonas group of the γ-Proteobacteriaand appeared to be involved only in the very early stages of colonization (within the first 24 h). A comparison of the colonization patterns on the test surfaces indicated that the early bacterial community succession rate and/or direction may be influenced by surface physicochemical properties. However, organisms belonging to the Roseobacter subgroup are ubiquitous and rapid colonizers of surfaces in coastal environments.


Applied and Environmental Microbiology | 2008

Cross-Ocean Distribution of Rhodobacterales Bacteria as Primary Surface Colonizers in Temperate Coastal Marine Waters

Hongyue Dang; Tiegang Li; Mingna Chen; Guiqiao Huang

ABSTRACT Bacterial surface colonization is a universal adaptation strategy in aquatic environments. However, neither the identities of early colonizers nor the temporal changes in surface assemblages are well understood. To determine the identities of the most common bacterial primary colonizers and to assess the succession process, if any, of the bacterial assemblages during early stages of surface colonization in coastal water of the West Pacific Ocean, nonnutritive inert materials (glass, Plexiglas, and polyvinyl chloride) were employed as test surfaces and incubated in seawater off the Qingdao coast in the spring of 2005 for 24 and 72 h. Phylogenetic analysis of the 16S rRNA gene sequences amplified from the recovered surface-colonizing microbiota indicated that diverse bacteria colonized the submerged surfaces. Multivariate statistical cluster analyses indicated that the succession of early surface-colonizing bacterial assemblages followed sequential steps on all types of test surfaces. The Rhodobacterales, especially the marine Roseobacter clade members, formed the most common and dominant primary surface-colonizing bacterial group. Our current data, along with previous studies of the Atlantic coast, indicate that the Rhodobacterales bacteria are the dominant and ubiquitous primary surface colonizers in temperate coastal waters of the world and that microbial surface colonization follows a succession sequence. A conceptual model is proposed based on these findings, which may have important implications for understanding the structure, dynamics, and function of marine biofilms and for developing strategies to harness or control surface-associated microbial communities.


Microbiology and Molecular Biology Reviews | 2016

Microbial Surface Colonization and Biofilm Development in Marine Environments

Hongyue Dang; Charles R. Lovell

SUMMARY Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration.


Applied and Environmental Microbiology | 2010

Diversity, abundance, and spatial distribution of sediment ammonia-oxidizing Betaproteobacteria in response to environmental gradients and coastal eutrophication in Jiaozhou Bay, China.

Hongyue Dang; Jing Li; Ruipeng Chen; Lin Wang; Lizhong Guo; Zhinan Zhang; Martin G. Klotz

ABSTRACT Ongoing anthropogenic eutrophication of Jiaozhou Bay offers an opportunity to study the influence of human activity on bacterial communities that drive biogeochemical cycling. Nitrification in coastal waters appears to be a sensitive indicator of environmental change, suggesting that function and structure of the microbial nitrifying community may be associated closely with environmental conditions. In the current study, the amoA gene was used to unravel the relationship between sediment aerobic obligate ammonia-oxidizing Betaproteobacteria (Beta-AOB) and their environment in Jiaozhou Bay. Protein sequences deduced from amoA gene sequences grouped within four distinct clusters in the Nitrosomonas lineage, including a putative new cluster. In addition, AmoA sequences belonging to three newly defined clusters in the Nitrosospira lineage were also identified. Multivariate statistical analyses indicated that the studied Beta-AOB community structures correlated with environmental parameters, of which nitrite-N and sediment sand content had significant impact on the composition, structure, and distribution of the Beta-AOB community. Both amoA clone library and quantitative PCR (qPCR) analyses indicated that continental input from the nearby wastewater treatment plants and polluted rivers may have significant impact on the composition and abundance of the sediment Beta-AOB assemblages in Jiaozhou Bay. Our work is the first report of a direct link between a sedimentological parameter and the composition and distribution of the sediment Beta-AOB and indicates the potential for using the Beta-AOB community composition in general and individual isolates or environmental clones in the Nitrosomonas oligotropha lineage in particular as bioindicators and biotracers of pollution or freshwater or wastewater input in coastal environments.


Applied and Environmental Microbiology | 2010

Environmental Factors Shape Sediment Anammox Bacterial Communities in Hypernutrified Jiaozhou Bay, China

Hongyue Dang; Ruipeng Chen; Lin Wang; Lizhong Guo; Pingping Chen; Zuwang Tang; Fang Tian; Shaozheng Li; Martin G. Klotz

ABSTRACT Bacterial anaerobic ammonium oxidation (anammox) is an important process in the marine nitrogen cycle. Because ongoing eutrophication of coastal bays contributes significantly to the formation of low-oxygen zones, monitoring of the anammox bacterial community offers a unique opportunity for assessment of anthropogenic perturbations in these environments. The current study used targeting of 16S rRNA and hzo genes to characterize the composition and structure of the anammox bacterial community in the sediments of the eutrophic Jiaozhou Bay, thereby unraveling their diversity, abundance, and distribution. Abundance and distribution of hzo genes revealed a greater taxonomic diversity in Jiaozhou Bay, including several novel clades of anammox bacteria. In contrast, the targeting of 16S rRNA genes verified the presence of only “Candidatus Scalindua,” albeit with a high microdiversity. The genus “Ca. Scalindua” comprised the apparent majority of active sediment anammox bacteria. Multivariate statistical analyses indicated a heterogeneous distribution of the anammox bacterial assemblages in Jiaozhou Bay. Of all environmental parameters investigated, sediment organic C/organic N (OrgC/OrgN), nitrite concentration, and sediment median grain size were found to impact the composition, structure, and distribution of the sediment anammox bacterial community. Analysis of Pearson correlations between environmental factors and abundance of 16S rRNA and hzo genes as determined by fluorescent real-time PCR suggests that the local nitrite concentration is the key regulator of the abundance of anammox bacteria in Jiaozhou Bay sediments.


Applied and Environmental Microbiology | 2002

Numerical Dominance and Phylotype Diversity of Marine Rhodobacter Species during Early Colonization of Submerged Surfaces in Coastal Marine Waters as Determined by 16S Ribosomal DNA Sequence Analysis and Fluorescence In Situ Hybridization

Hongyue Dang; Charles R. Lovell

ABSTRACT Early stages of surface colonization in coastal marine waters appear to be dominated by the marine Rhodobacter group of the α subdivision of the division Proteobacteria (α-Proteobacteria). However, the quantitative contribution of this group to primary surface colonization has not been determined. In this study, glass microscope slides were incubated in a salt marsh tidal creek for 3 or 6 days. Colonizing bacteria on the slides were examined by fluorescence in situ hybridization by employing DNA probes targeting 16S or 23S rRNA to identify specific phylogenetic groups. Confocal laser scanning microscopy was then used to quantify and track the dynamics of bacterial primary colonists during the early stages of surface colonization and growth. More than 60% of the surface-colonizing bacteria detectable by fluorescence staining (Yo-Pro-1) could also be detected with the Bacteria domain probe EUB338. Archaea were not detected on the surfaces and did not appear to participate in surface colonization. Of the three subdivisions of the Proteobacteria examined, the α-Proteobacteria were the most abundant surface-colonizing organisms. More than 28% of the total bacterial cells and more than 40% of the cells detected by EUB338 on the surfaces were affiliated with the marine Rhodobacter group. Bacterial abundance increased significantly on the surfaces during short-term incubation, mainly due to the growth of the marine Rhodobacter group organisms. These results demonstrated the quantitative importance of the marine Rhodobacter group in colonization of surfaces in salt marsh waters and confirmed that at least during the early stages of colonization, this group dominated the surface-colonizing bacterial assemblage.


Environmental Microbiology | 2011

Molecular characterization of putative biocorroding microbiota with a novel niche detection of Epsilon- and Zetaproteobacteria in Pacific Ocean coastal seawaters.

Hongyue Dang; Ruipeng Chen; Lin Wang; Sudong Shao; Lingqing Dai; Ying Ye; Lizhong Guo; Guiqiao Huang; Martin G. Klotz

Submerged metal surfaces in marine waters undergo rapid microbial colonization and biocorrosion, causing huge damage to marine engineering facilities and significant financial losses. In coastal areas, an accelerated and particularly severe form of biocorrosion termed accelerated low water corrosion (ALWC) is widespread globally. While identification of biocorroding microorganisms and the dynamics of their community structures is the key for understanding the processes and mechanisms leading to ALWC, neither one is presently understood. In this study, analysis of constructed clone libraries and qPCR assays targeting group-specific 16S rRNA or functional marker genes were used to determine the identity and abundance of putative early carbon steel surface-colonizing and biocorroding microbes in coastal seawater. Diverse microbial groups including 10 bacterial phyla, archaea and algae were found to putatively participate in the surface-colonizing process. Analysis of the community structure of carbon steel surface microbiota revealed a temporal succession leading to ALWC. By extending the current state of knowledge, our work demonstrates the global importance of Alphaproteobacteria (mainly Rhodobacterales), Gammaproteobacteria (mainly Alteromonadales and Oceanospirillales), Bacteroidetes (mainly Flavobacteriales) and microalgae as the pioneer and sustaining surface colonizers that contribute to initial formation and development of surface biofilms. We also discovered Epsilonproteobacteria and the recently described Zetaproteobacteria as putative corrosion-causing microorganisms during early steps of the ALWC process. Hence, our study reports that Zetaproteobacteria may be ubiquitous also in non-hydrothermal coastal seawaters and that ALWC of submerged carbon steel surfaces in coastal waters may involve a highly diverse, complex and dynamic microbial consortium. Our finding that Epsilon- and Zetaproteobacteria may play pivotal roles in ALWC provides a new starting point for future investigation of the ALWC process and mechanism in marine environments. Further studies of Epsilon- and Zetaproteobacteria in particular may thus help with the design of effective corrosion prevention and control strategies.


Applied and Environmental Microbiology | 2009

Diverse and Novel nifH and nifH-Like Gene Sequences in the Deep-Sea Methane Seep Sediments of the Okhotsk Sea

Hongyue Dang; Xiwu Luan; Jingyi Zhao; Jing Li

ABSTRACT Diverse nifH and nifH-like gene sequences were obtained from the deep-sea surface sediments of the methane hydrate-bearing Okhotsk Sea. Some sequences formed novel families of the NifH or NifH-like proteins, of currently unresolved bacterial or archaeal origin. Comparison with other marine environments indicates environmental specificity of some of the sequences, either unique to the methane seep sediments of the Okhotsk Sea or to the general deep-sea methane seep sedimentary environments.


PLOS ONE | 2013

Molecular detection of Candidatus Scalindua pacifica and environmental responses of sediment anammox bacterial community in the Bohai Sea, China.

Hongyue Dang; Haixia Zhou; Zhinan Zhang; Zishan Yu; Er Hua; Xiaoshou Liu; Nianzhi Jiao

The Bohai Sea is a large semi-enclosed shallow water basin, which receives extensive river discharges of various terrestrial and anthropogenic materials such as sediments, nutrients and contaminants. How these terrigenous inputs may influence the diversity, community structure, biogeographical distribution, abundance and ecophysiology of the sediment anaerobic ammonium oxidation (anammox) bacteria was unknown. To answer this question, an investigation employing both 16S rRNA and hzo gene biomarkers was carried out. Ca. Scalindua bacteria were predominant in the surface sediments of the Bohai Sea, while non-Scalindua anammox bacteria were also detected in the Yellow River estuary and inner part of Liaodong Bay that received strong riverine and anthropogenic impacts. A novel 16S rRNA gene sequence clade was identified, putatively representing an anammox bacterial new candidate species tentatively named “Ca. Scalindua pacifica”. Several groups of environmental factors, usually with distinct physicochemical or biogeochemical natures, including general marine and estuarine physicochemical properties, availability of anammox substrates (inorganic N compounds), alternative reductants and oxidants, environmental variations caused by river discharges and associated contaminants such as heavy metals, were identified to likely play important roles in influencing the ecology and biogeochemical functioning of the sediment anammox bacteria. In addition to inorganic N compounds that might play a key role in shaping the anammox microbiota, organic carbon, organic nitrogen, sulfate, sulfide and metals all showed the potentials to participate in the anammox process, releasing the strict dependence of the anammox bacteria upon the direct availability of inorganic N nutrients that might be limiting in certain areas of the Bohai Sea. The importance of inorganic N nutrients and certain other environmental factors to the sediment anammox microbiota suggests that these bacteria were active for the in situ N transforming process and maintained a versatile life style well adapted to the varying environmental conditions of the studied coastal ocean.


Applied and Environmental Microbiology | 2013

Thaumarchaeotal Signature Gene Distribution in Sediments of the Northern South China Sea: an Indicator of the Metabolic Intersection of the Marine Carbon, Nitrogen, and Phosphorus Cycles?

Hongyue Dang; Haixia Zhou; Jinying Yang; Huangmin Ge; Nianzhi Jiao; Xiwu Luan; Chuanlun Zhang; Martin G. Klotz

ABSTRACT Thaumarchaeota are abundant and active in marine waters, where they contribute to aerobic ammonia oxidation and light-independent carbon fixation. The ecological function of thaumarchaeota in marine sediments, however, has rarely been investigated, even though marine sediments constitute the majority of the Earths surface. Thaumarchaeota in the upper layer of sediments may contribute significantly to the reservoir of nitrogen oxides in ocean waters and thus to productivity, including the assimilation of carbon. We tested this hypothesis in the northern South China Sea (nSCS), a section of a large oligotrophic marginal sea with limited influx of nutrients, including nitrogen, by investigating the diversity, abundance, community structure, and spatial distribution of thaumarchaeotal signatures in surface sediments. Quantitative real-time PCR using primers designed to detect 16S rRNA and amoA genes in sediment community DNA revealed a significantly higher abundance of pertinent thaumarchaeotal than betaproteobacterial genes. This finding correlates with high levels of hcd genes, a signature of thaumarchaeotal autotrophic carbon fixation. Thaumarchaeol, a signature lipid biomarker for thaumarchaeota, constituted the majority of archaeal lipids in marine sediments. Sediment temperature and organic P and silt contents were identified as key environmental factors shaping the community structure and distribution of the monitored thaumarchaeotal amoA genes. When the pore water PO4 3− concentration was controlled for via partial-correlation analysis, thaumarchaeotal amoA gene abundance significantly correlated with the sediment pore water NO2 − concentration, suggesting that the amoA-bearing thaumarchaeota contribute to nitrite production. Statistical analyses also suggest that thaumarchaeotal metabolism could serve as a pivotal intersection of the carbon, nitrogen, and phosphorus cycles in marine sediments.

Collaboration


Dive into the Hongyue Dang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin G. Klotz

University of North Carolina at Charlotte

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chao Li

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar

Haixia Zhou

China University of Petroleum

View shared research outputs
Top Co-Authors

Avatar

Jing Li

China University of Petroleum

View shared research outputs
Top Co-Authors

Avatar

Lin Wang

Qingdao Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ruipeng Chen

Qingdao Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge