Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hongzhang Chen is active.

Publication


Featured researches published by Hongzhang Chen.


Biotechnology Advances | 2010

Key technologies for bioethanol production from lignocellulose.

Hongzhang Chen; Weihua Qiu

Controversies on bioethanol produced from straw mainly revolve around the unfitted economical feasibility and environmental concerns of the process, which attribute mainly to unilateral researches from own specialties of each scholar without regard to the characteristics of the straws themselves. To achieve an economical and environmentally-friendly system of bioethanol production from straw, a number of breakthroughs are needed, not only in individual process steps, but also in the balance and combination of these processes. This article gives an overview of the new technologies required and the advances achieved in recent years, especial progresses achieved in our group, based on the concept of fractional conversions. An eco-industrial multi-production pattern is established, by which the maximum efficacy and benefit of process can be achieved due to the production of many high-value co-products simultaneously with ethanol. We believed that, in the future, the bioethanol production from straw will be competitive economically and environmentally.


Bioresource Technology | 2008

Enhanced enzymatic hydrolysis of wheat straw by aqueous glycerol pretreatment.

Fubao Sun; Hongzhang Chen

Considering the practical technology-economy of glycerol processing from oleochemicals industry, the ensuing work was proposed to further explore the atmospheric aqueous glycerol autocatalytic organosolv pretreatment (AAGAOP) to improve the enzymatic hydrolysis of lignocellulosic biomass. With the liquid-solid ratio of 20 g g(-1) at 220 degrees C for 3h, the AAGAOP enabled wheat straw to remove approximately 70% hemicelluloses and approximately 65% lignin, with approximately 98% cellulose retention. The pretreated fiber was achieved with approximately 90% of the enzymatic hydrolysis yield after 48 h. At oven-drying, dehydration was likely to cause the hornification of fiber, which was responsible for the low enzymatic hydrolysis of dried fiber. With SEM observations, the AAGAOP disrupted wheat straw into thin and fine fibrils, with a small average size and more surface area. The AAGAOP technique, as a novel strategy, enhanced the enzymatic hydrolysis of lignocellulosic biomass by removing the chemically compositional barrier and altering the physically structural impediment.


Bioresource Technology | 2009

Characteristics of hydrogen and methane production from cornstalks by an augmented two- or three-stage anaerobic fermentation process

Yuan Lu; Qiheng Lai; Chong Zhang; Hongxin Zhao; Kun Ma; Xuebing Zhao; Hongzhang Chen; Dehua Liu; Xin-Hui Xing

This paper presents the co-production of hydrogen and methane from cornstalks by a two- or three-stage anaerobic fermentation process augmented with effective artificial microbial community. Two-stage fermentation by using the anaerobic sludge and DGGE analysis showed that effective and stable strains should be introduced into the system. We introduced Enterobacter aerogens or Clostridium paraputrificum into the hydrogen stage, and C. paraputrificum was proven to be more effective. In the three-stage process consisting of the improved hydrolysis, hydrogen and methane production stages, the highest soluble sugars (0.482 kg/kg cornstalks) were obtained after the introduction of Clostridium thermocellum in the hydrolysis stage, under the thermophilic (55 degrees C) and acidic (pH 5.0) conditions. Hydrolysates from 1 kg of cornstalks could produce 2.61 mol (63.7 l) hydrogen by augmentation with C. paraputrificum and 4.69 mol (114.6 l) methane by anaerobic granular sludge, corresponding to 54.1% energy recovery.


Bioresource Technology | 2011

Production of levulinic acid from steam exploded rice straw via solid superacid, S2O82-/ZrO2-SiO2-Sm2O3

Hongzhang Chen; Bin Yu; Shengying Jin

In this study, solid superacid was employed to catalyze the decomposition of steam exploded rice straw (SERS) for the production of levulinic acid, a versatile platform chemical. The results revealed that solid superacid, S(2)O(8)(2-)/ZrO(2)-SiO(2)-Sm(2)O(3), could be used as a substitute for homogenous acid to catalyze the production of LA from SERS and LA yield increased with the addition of solid superacid. It was also found that steam explosion combined with superfine grinding of rice straw could effectively increase LA yield for reducing particle size of rice straw and enhancing the accessibility of cellulose. Under optimal conditions of 200°C, 10 min, 13.3% of solid superacid to pretreated rice straw, and 1:15 of solid-liquid ratio, LA yield of the superfine grinding SERS was 70% of the theoretical yield, which was equivalent with the homogeneous acid-catalyzed production of LA.


Bioresource Technology | 2001

Bioconversion of corn straw by coupling ensiling and solid-state fermentation.

Xuexia Yang; Hongzhang Chen; Zuohu Li

A two-stage process that combined solid-state fermentation (SSF) and ensiling was used for bioconversion of corn straw, in order to increase nutritional value and palatability for animal feed. SSF of corn straw increased the level of protein from 6.7% to 14.7% and decreased the cellulose by 38.0% and hemicellulose by 21.2%. Cellulase and xylanase were produced during SSF. After SSF, the fermented substrate was directly ensiled by inoculating with lactic acid bacteria (LAB). In situ produced enzymes and bacterial inoculation resulted in a rapid drop in pH, a high level of lactic acid production, partial degradation of cell wall components and generation of reducing sugars (RSs). Efficiency of ensiling at 25 degrees C, 30 degrees C, 35 degrees C, 40 degrees C was evaluated. Temperature influenced the effect of ensiling; the higher the temperature, the shorter the ensiling period. The combined fermentation upgraded the nutritional value, enhanced the efficiency of ensiling and reduced bioprocessing costs.


Archive | 2014

Chemical Composition and Structure of Natural Lignocellulose

Hongzhang Chen

The wide variety of natural cellulosic materials has complex and uneven components. Cellulose, hemicellulose, and lignin comprise the main composition of cell walls of plants and are important components of natural lignocellulosic materials. Cellulose molecules determine the cell wall framework, and pectin is located between the cellulose microfilaments of the cell wall. In addition, cellulosic materials contain rich cell wall protein, pigment, and ash. Understanding of the chemical composition and structure of natural lignocellulosic materials, characteristics of each component, and interrelationships between various components would contribute to the research and development regarding natural cellulose materials. This chapter mainly describes the chemical composition and structure of natural cellulosic materials.


Bioresource Technology | 2008

Characterization of β-glucosidase from corn stover and its application in simultaneous saccharification and fermentation.

Yejun Han; Hongzhang Chen

Purification and characterization of beta-glucosidase from corn stover was performed and the enzyme was tried in SSF to evaluate the suitability of plant glycosyl hydrolases in lignocellulose conversion. A beta-glucosidase with M(w) of 62.4 kDa was purified to homogeneity from post-harvest corn stover. The following physicochemical and kinetic parameters of the beta-glucosidase were studied respectively: optimum temperature, thermal stability, optimum pH, pH stability, K(m), V(max), V(i), cellobiose inhibition, tryptic peptide mass spectrometry and effect of metal ions and other reagents on the activity. The beta-glucosidase activity on salicin was optimal at pH 4.8 and 37 degrees C. The unique property of optimum temperature makes the beta-glucosidase potentially useful in SSF. In SSF of steam explosion pretreated corn stover, the supplementation of the purified beta-glucosidase was more effective than Aspergillus niger beta-glucosidase.


Bioresource Technology | 2012

Enhanced the enzymatic hydrolysis efficiency of wheat straw after combined steam explosion and laccase pretreatment

Weihua Qiu; Hongzhang Chen

Laccase, capable of selectively degrading lignin while keeping cellulose intact, has been widely applied for the modification and bio-bleaching of pulp. In this study Sclerotium sp. laccase (MSLac) was employed in combination with steam explosion to evaluate the effect of this treatment on cellulose hydrolysis. Combined steam explosion with laccase pretreatment enhanced the cellulose conversion rate of wheat straw no matter in the case of successive (MSLac-Cel) and simultaneous (MSLac+Cel) MSLac and cellulase hydrolysis. The highest cellulose conversion rate of 84.23% was obtained when steam-exploded wheat straw (SEWS) (1.3 MPa, 5 min) was treated by MSLac+Cel at a laccase loading of 0.55 U g(-1) substrate. FT-IR and SEM analyses indicated that MSLac oxidized the phenol and changed electron configuration of the ring, which contributed to loosening the compact wrap of lignin-carbohydrate complex and consequently enhancing the enzymatic hydrolysis efficiency of cellulose. This article provided a promising method for lignocellulose bio-pretreatment.


Archive | 2014

Biotechnology of Lignocellulose

Hongzhang Chen

Biotechnology of lignocellulose : , Biotechnology of lignocellulose : , کتابخانه دیجیتال جندی شاپور اهواز


Bioresource Technology | 2012

Effects of packing rates of cubic-shaped polyurethane foam carriers on the microbial community and the removal of organics and nitrogen in moving bed biofilm reactors

Quan Feng; Yuxiao Wang; Tianmin Wang; Hao Zheng; Libing Chu; Chong Zhang; Hongzhang Chen; Xiuqin Kong; Xin-Hui Xing

The effects of packing rates (20%, 30%, and 40%) of polyurethane foam (PUF) to the removal of organics and nitrogen were investigated by continuously feeding artificial sewage in three aerobic moving bed biofilm reactors. The results indicated that the packing rate of the PUF carriers had little influence on the COD removal efficiency (81% on average). However, ammonium removal was affected by the packing rates, which was presumably due to the different relative abundances of nitrifying bacteria. A high ammonium removal efficiency of 96.3% at a hydraulic retention time of 5h was achieved in 40% packing rate reactor, compared with 37.4% in 20% packing rate. Microprofiles of dissolved oxygen and nitrate revealed that dense biofilm limits the DO transfer distance and nitrate diffusion. Pyrosequencing analysis of the biofilm showed that Proteobacteria, Bacteroidetes and Verrucomicrobia were the three most abundant phyla, but the proportions of the microbial community varied with the packing rate of the PUF carriers.

Collaboration


Dive into the Hongzhang Chen's collaboration.

Top Co-Authors

Avatar

Lan Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaoguo Fu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhi-Hua Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Weidong Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yejun Han

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Weihua Qiu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wenjie Sui

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shengying Jin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guanhua Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qin He

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge