Hossain M. Anawar
University of Western Australia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hossain M. Anawar.
Environmental Geochemistry and Health | 2011
Hossain M. Anawar; Marisa Freitas; Nuno Canha; I. Santa Regina
The study was conducted to characterize mineralogical and elemental composition of mine tailings in order to evaluate the environmental hazards, and identify the metal accumulation potential of native plant species from São Domingos mine, one of the long-term activity mines of the Iberian Pyrite Belt dating back to pre-Roman times. The mine tailings including soils and different plant species from São Domingos were analyzed for determination of tailings characteristics and chemical element contents in tailings and plants. The large amounts of mining wastes are causing significant adverse environment impacts due to acid mine drainage production and mobilization of potentially toxic metals and metalloids in residential areas, agricultural fields, downstreams, and rivers. The typical mineralogical composition is as follows: quartz, micas, K-feldspar, olivine-group minerals, magnetite, goethite, hematite, jarosite, and sulfides. The mine tailings were highly contaminated by As, Ag, Cr, Hg, Sn, Sb, Fe, and Zn; and among them, As and Sb, main contaminants, attained the highest concentrations except Fe. Arsenic has exhibited very good correlations with Au, Fe, Sb, Se, and W; and Sb with As, Au, Fe, Se, Sn, and W in tailings. Among the all plant species, the higher concentrations of all the metals were noted in Erica andevalensis, Erica australis, Echium plantagium, and Lavandula luisierra. Considering the tolerant behavior and abundant growth, the plant species Erica australis, Erica andevalensis,Lavandula luisierra,Daphne gnidium, Rumex induratus, Ulex eriocladus, Juncus, and Genista hirsutus are of major importance for the rehabilitation and recovery of degraded São Domingos mining area.
Journal of Environmental Management | 2015
Hossain M. Anawar
The oxidative dissolution of sulfidic minerals releases the extremely acidic leachate, sulfate and potentially toxic elements e.g., As, Ag, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Th, U, Zn, etc. from different mine tailings and waste dumps. For the sustainable rehabilitation and disposal of mining waste, the sources and mechanisms of contaminant generation, fate and transport of contaminants should be clearly understood. Therefore, this study has provided a critical review on (1) recent insights in mechanisms of oxidation of sulfidic minerals, (2) environmental contamination by mining waste, and (3) remediation and rehabilitation techniques, and (4) then developed the GEMTEC conceptual model/guide [(bio)-geochemistry-mine type-mineralogy- geological texture-ore extraction process-climatic knowledge)] to provide the new scientific approach and knowledge for remediation of mining wastes and acid mine drainage. This study has suggested the pre-mining geological, geochemical, mineralogical and microtextural characterization of different mineral deposits, and post-mining studies of ore extraction processes, physical, geochemical, mineralogical and microbial reactions, natural attenuation and effect of climate change for sustainable rehabilitation of mining waste. All components of this model should be considered for effective and integrated management of mining waste and acid mine drainage.
Pedosphere | 2015
Paul Blackwell; Stephen Joseph; Paul G Munroe; Hossain M. Anawar; Paul Storer; R. J. Gilkes; Zakaria M. Solaiman
The high price of synthetic fertilisers and the price barrier for biochar as a soil amendment have encouraged the exploration of using biochar in fertiliser replacement formulations. Biochars coupled with fertilisers can be applied at lower application rates to achieve benefits in plant growth and nutrition, as well as soil biological fertility. It is necessary to evaluate the use of biochar as a fertiliser substitute. Therefore, this study investigated the comparative influences of biochars, including Acacia saligna (AS), Simcoa jarrah (SJ) and Wundowie jarrah (WJ), mineral fertiliser with microbes (MF + M), biochar-mineral complex (BMC) and their combination on mycorrhizal colonisation, growth and nutrition of wheat in a glasshouse experiment and sorghum in field conditions. BMC + MF + M treatment produced higher mycorrhizal colonisation than MF + M alone, indicating that BMC had a significant role in increasing mycorrhizal colonisation. SJ (treated with acetic acid) and MF + M treatments, as well as AS + MF + M application, showed similar effects on mycorrhizal colonisation, but lower colonisation than the BMC + MF + M treatment. Overall, the BMC + MF + M treatment supported the maximum shoot, root and total plant dry weight followed by AS + MF + M and WJ + MF + M. The MF + M treatment had the maximum shoot N and K concentrations, while BMC + MF + M application had the maximum shoot P concentration. AS + MF + M and WJ + MF + M treatments supported the maximum N uptake by wheat shoots, while BMC + MF + M supported the maximum P uptake. The results showed that biochars and BMCs could increase mycorrhizal colonisation, plant growth and nutrient uptake of wheat, particularly N, P, K, S and Zn. The field experiment confirmed that BMC application at a rate of 300 kg ha−1 could increase the yield of irrigated sorghum on a loam soil and provide better applied P use efficiency compared to a water-soluble fertiliser alone. These results indicated that biochar-based fertilisers might increase the resilience and sustainability of dryland cropping in environments such as in Western Australia and warrant further field evaluation.
Journal of Soils and Sediments | 2013
Hossain M. Anawar; Nuno Canha; I. Santa-Regina; Marisa Freitas
PurposeThe impacts of mining contaminations and physico-chemical properties and geochemistry of mine tailings on the density, richness, biodiversity, evolution and succession of plant species and vegetation recovery in the mining area is very poorly reported in the literature. Therefore, the present study conducted an investigation on vegetation development and succession of plant communities at the abandoned São Domingos pyrite mining area.Materials and methodsWe conducted the field survey to estimate the vegetation development and succession of plant communities, collect vegetation (plant species, lichen and moss) and tailing (and soil) samples, and finally analyzed the physico-chemical and geochemical properties and metal levels in mine tailings, soil and vegetation samples.Results and discussionThe results showed that the communities of low height and biomass like grass, legume, shrub, moss and lichen were dominating on the mine tailings and waste dumps at the inner sites and center of the mine, and the vegetation coverage was explicitly very poor. The reddish brown colluvia had poor soil quality, but high acidity and metal concentrations. However, at the outer edge of the mine the loamy soil and relatively lower acidity and metal contamination favored the higher vegetation cover and a gradual increase in the number of species and plant succession, where the taller, higher biomass and broad leaf trees were abundantly grown forming a dense forest and canopy. The succession of several plant communities dominating in the mining area, vegetation coverage and species richness were strongly related to the different levels of contamination, soil properties and adverse factors of mine tailings.ConclusionsAlthough the high concentrations of toxic trace elements and low pH soil are important factors for limiting the plant growth, however, proper soil development with enriched nutrients and properties on mining wastes, by either natural or external soil aided process, can help to promote the high vegetation growth, mine rehabilitation and ecological restoration of the mining degraded lands.
Pedosphere | 2015
Hossain M. Anawar; Farjana Akter; Zakaria M. Solaiman; Vladimir Strezov
Abstract Mine tailings, waste rock piles, acid mine drainage, industrial wastewater, and sewage sludge have contaminated a vast area of cultivable and fallow lands, with a consequence of deterioration of soil and water quality and watercourses due to the erosion of contaminated soils for absence of vegetative cover. High concentrations of toxic elements, organic contaminants, acidic soils, and harsh climatic conditions have made it difficult to re-establish vegetation and produce crops there. Recently, a significant body of work has focussed on the suitability and potentiality of biochar as a soil remediation tool that increases seed emergence, soil and crop productivity, above ground biomass, and vegetation cover on mine tailings, waste rock piles, and industrial and sewage waste-contaminated soils by increasing soil nutrients and water-holding capacity, amelioration of soil acidity, and stimulation of microbial diversity and functions. This review addresses: i) the functional properties of biochar, and microbial cycling of nutrients in soil; ii) bioremediation, especially phytoremediation of mine tailings, industrial waste, sewage sludge, and contaminated soil using biochar; iii) impact of biochar on reduction of acid production, acid mine drainage treatment, and geochemical dynamics in mine tailings; and iv) treatment of metal and organic contaminants in soils using biochar, and restoration of degraded land.
Pedosphere | 2015
Stephen Joseph; Hossain M. Anawar; Paul Storer; Paul Blackwell; Chee Chia; Yun Lin; Paul G Munroe; Scott W. Donne; Josip Horvat; Jianli Wang; Zakaria M. Solaiman
Abstract At present, there is little commercial sale of biochar, since farmers find they can not gain a return on their investment in this amendment in the first few years after its application, because of the high cost associated with large application rates. To overcome this constraint, development of artificially aged enriched biochar-mineral complexes (BMCs), having a higher mineral content, surface functionality, exchangeable cations, high concentration of magnetic iron (Fe) nanoparticles, and higher water-extractable organic compounds has been undertaken by a combined team of researchers and a commercial company. Two biochars produced under different pyrolysis conditions were activated with a phosphoric acid treatment. A mixture of clay, chicken litter, and minerals were added to the biochar, and then this composite was torrefied at either 180 or 220 °C. In this study a pot experiment was carried out in glasshouse conditions to determine the effects of four different BMCs, with different formulations applied at rates of 100 and 200 kg ha−1, on the mycorrhizal colonisation, wheat growth and nutrient uptake, and soil quality improvement. It was found that the phosphorus (P) and nitrogen uptake in wheat shoots were significantly greater for a low application rate of BMCs (100 kg ha−1). The present formulation of BMC was effective in enhancing growth of wheat at low application rate (100 kg ha−1). The increase in growth appeared due to an increase in P uptake in the plants that could be partly attributed to an increase in mycorrhizal colonisation and partly due to the properties of the BMC.
Pedosphere | 2015
Zakaria M. Solaiman; Hossain M. Anawar
Biochar addition to soil is currently being considered as a means to sequester carbon while simultaneously improving soil health, soil fertility and agronomic benefits. The focus of this special issue is on current research on the effects of biochar application to soil for overcoming diverse soil constraints and recommending further research relating to biochar application to soil. The biochar research has progressed considerably with important key findings on agronomic benefits, carbon sequestration, greenhouse gas emissions, soil acidity, soil fertility, soil health, soil salinity, etc., but more research is required before definitive recommendations can be made to end-users regarding the effects of biochar application across a range of soils, climates and land management practices.
Journal of Radioanalytical and Nuclear Chemistry | 2012
Hossain M. Anawar; Maria do Carmo Freitas; Nuno Canha; I. Dionísio; H. M. Dung; C. Galinha; A. M. G. Pacheco
Native plant species, lichens and tailings, sampled from a copper–sulphide mining area located in southern–eastern Portugal, were analysed by neutron activation analysis (INAA) for determination of rare earth elements (REEs). Values of ΣREEs and individual REEs concentration of tailing samples are higher than those of natural background concentrations. The higher values of REEs are found in modern slags and the mixture of oxidized gossan and sulphide disseminated country rocks when compared with the alluvial sediments contaminated by mine tailings. The total concentrations of light REEs are higher than those of heavy REEs in all tailing samples. Distribution patterns of PAAS-normalized REEs in mine tailings show slightly LREE enriched and flat HREE pattern with negative Eu anomaly. Lichens accumulated higher concentration of lanthanides than vascular plants. The elevated levels of REEs in lichen, native plant species and tailing samples reflect the contamination of REEs in São Domingos mining area. The Carlina corymbosa, Erica australis and Lavandula luisierra accumulated the higher amounts of La, Ce and other REEs than the other plant species grown in this mining area.
Applied Radiation and Isotopes | 2011
C. Galinha; Hossain M. Anawar; Maria do Carmo Freitas; A. M. G. Pacheco; Marina Almeida-Silva; José Coutinho; Benvindo Maçãs; Ana Sofia Almeida
The deficiency of essential micronutrients and excess of toxic metals in cereals, an important food items for human nutrition, can cause public health risk. Therefore, before their consumption and adoption of soil supplementation, concentrations of essential micronutrients and metals in cereals should be monitored. This study collected soil and two varieties of wheat samples-Triticum aestivum L. (Jordão/bread wheat), and Triticum durum L. (Marialva/durum wheat) from Elvas area, Portugal and analyzed concentrations of As, Cr, Co, Fe, K, Na, Rb and Zn using Instrumental Neutron Activation Analysis (INAA) to focus on the risk of adverse public health issues. The low variability and moderate concentrations of metals in soils indicated a lower significant effect of environmental input on metal concentrations in agricultural soils. The Cr and Fe concentrations in soils that ranged from 93-117 and 26,400-31,300mg/kg, respectively, were relatively high, but Zn concentration was very low (below detection limit <22mg/kg) indicating that soils should be supplemented with Zn during cultivation. The concentrations of metals in roots and straw of both varieties of wheat decreased in the order of K>Fe>Na>Zn>Cr>Rb>As>Co. Concentrations of As, Co and Cr in root, straw and spike of both varieties were higher than the permissible limits with exception of a few samples. The concentrations of Zn in root, straw and spike were relatively low (4-30mg/kg) indicating the deficiency of an essential micronutrient Zn in wheat cultivated in Portugal. The elemental transfer from soil to plant decreases with increasing growth of the plant. The concentrations of various metals in different parts of wheat followed the order: Root>Straw>Spike. A few root, straw and spike samples showed enrichment of metals, but the majority of the samples showed no enrichment. Potassium is enriched in all samples of root, straw and spike for both varieties of wheat. Relatively to the seed used for cultivation, Jordão presented higher transfer coefficients than Marialva, in particular for Co, Fe, and Na. The Jordão and Marialva cultivars accumulated not statistically significant different concentrations of different metals. The advantages of using INAA are the multielementality, low detection limits and use of solid samples (no need of digestion).
Environmental Pollution | 2018
Hossain M. Anawar; Zed Rengel; Paul Damon; Mark Tibbett
High arsenic (As) concentrations in the soil, water and plant systems can pose a direct health risk to humans and ecosystems. Phosphate (Pi) ions strongly influence As availability in soil, its uptake and toxicity to plants. Better understanding of As(V)-Pi interactions in soils and plants will facilitate a potential remediation strategy for As contaminated soils, reducing As uptake by crop plants and toxicity to human populations via manipulation of soil Pi content. However, the As(V)-Pi interactions in soil-plant systems are complex, leading to contradictory findings among different studies. Therefore, this review investigates the role of soil type, soil properties, minerals, Pi levels in soil and plant, Pi transporters, mycorrhizal association and microbial activities on As-Pi interactions in soils and hydroponics, and uptake by plants, elucidate the key mechanisms, identify key knowledge gaps and recommend new research directions. Although Pi suppresses As uptake by plants in hydroponic systems, in soils it could either increase or decrease As availability and toxicity to plants depending on the soil types, properties and charge characteristics. In soil, As(V) availability is typically increased by the addition of Pi. At the root surface, the Pi transport system has high affinity for Pi over As(V). However, Pi concentration in plant influences the As transport from roots to shoots. Mycorrhizal association may reduce As uptake via a physiological shift to the mycorrhizal uptake pathway, which has a greater affinity for Pi over As(V) than the root epidermal uptake pathway.