Zakaria M. Solaiman
University of Western Australia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zakaria M. Solaiman.
Soil Research | 2010
Paul Blackwell; Evelyn S. Krull; Greg Butler; Allan Herbert; Zakaria M. Solaiman
Effects of banded biochar application on dryland wheat production and fertiliser use in 4 experiments in Western Australia and South Australia suggest that biochar has the potential to reduce fertiliser requirement while crop productivity is maintained, and biochar additions can increase crop yields at lower rates of fertiliser use. Banding was used to minimise wind erosion risk and place biochar close to crop roots. The biochars/metallurgical chars used in this study were made at relatively high temperatures from woody materials, forming stable, low-nutrient chars. The results suggest that a low biochar application rate (~1 t/ha) by banding may provide significant positive effects on yield and fertiliser requirement. Benefits are likely to result from improved crop nutrient and water uptake and crop water supply from increased arbuscular mycorrhizal fungal colonisation during dry seasons and in low P soils, rather than through direct nutrient or water supply from biochars. Financial analysis using farm cash flow over 12 years suggests that a break-even total cost of initial biochar use can range from AU
New Phytologist | 2015
Christina Kaiser; Matt R. Kilburn; Peta L. Clode; Lucia Fuchslueger; Marianne Koranda; John Cliff; Zakaria M. Solaiman; Daniel V. Murphy
40 to 190/ha if the benefits decline linearly to nil over 12 years, taking into account a P fertiliser saving of 50% or a yield increase of 10%, or both, assuming long-term soil fertility is not compromised. Accreditation of biochar for carbon trading may assist cost reduction.
Soil Research | 2010
Zakaria M. Solaiman; Paul Blackwell; Lynette Abbott; Paul Storer
Plants rapidly release photoassimilated carbon (C) to the soil via direct root exudation and associated mycorrhizal fungi, with both pathways promoting plant nutrient availability. This study aimed to explore these pathways from the roots vascular bundle to soil microbial communities. Using nanoscale secondary ion mass spectrometry (NanoSIMS) imaging and 13C-phospho- and neutral lipid fatty acids, we traced in-situ flows of recently photoassimilated C of 13CO2-exposed wheat (Triticum aestivum) through arbuscular mycorrhiza (AM) into root- and hyphae-associated soil microbial communities. Intraradical hyphae of AM fungi were significantly 13C-enriched compared to other root-cortex areas after 8 h of labelling. Immature fine root areas close to the root tip, where AM features were absent, showed signs of passive C loss and co-location of photoassimilates with nitrogen taken up from the soil solution. A significant and exclusively fresh proportion of 13C-photosynthates was delivered through the AM pathway and was utilised by different microbial groups compared to C directly released by roots. Our results indicate that a major release of recent photosynthates into soil leave plant roots via AM intraradical hyphae already upstream of passive root exudations. AM fungi may act as a rapid hub for translocating fresh plant C to soil microbes.
Plant and Soil | 2012
Zakaria M. Solaiman; Daniel V. Murphy; Lynette Abbott
The influence of biochar (biomass-derived black carbon) on crop growth and nutrient uptake varies based on the rate of biochar applied with fertilisers. We investigated the effect of deep-banded oil mallee biochar at different rates (0, 1.5, 3.0, and 6 t/ha) with 2 types of fertiliser (non-inoculated MultiMAPS® at 30 or 55 kg/ha; inoculated Western Mineral Fertiliser at 100 kg/ha) on wheat growth at a farmer’s field in a low rainfall area of Western Australia. Wheat yield increased significantly when biochar was applied with inoculated fertiliser and 30 kg/ha non-inoculated fertiliser. Mycorrhizal colonisation in wheat roots increased significantly with biochar application with inoculated mineral fertiliser. Mycorrhizal hyphae may have improved water supply to reduce drought stress in these treatments by extending crop exploration of water from the wide inter-rows. Grain yield increases were due to better grain survival and grain fill with reduced drought stress. Early stage phosphorus uptake was not improved by mycorrhizal colonisation—phosphorus supply from the soil and applied fertiliser was already adequate. The residual effect of biochar and mineral fertilisers was assessed using a mycorrhizal bioassay for soil collected from the field trial 2 years after application of biochar. Biochar and both fertilisers increased mycorrhizal colonisation in clover bioassay plants. Deep-banded biochar provided suitable conditions for mycorrhizal fungi to colonise plant roots.
Journal of Soils and Sediments | 2017
Mubshar Hussain; Muhammad Farooq; Ahmad Nawaz; Abdullah M. Al-Sadi; Zakaria M. Solaiman; Salem S. Alghamdi; Ume Ammara; Yong Sik Ok; Kadambot H. M. Siddique
Background and aimsBiochar can be produced from a wide range of organic sources with varying nutrient and metal concentrations. Before making irreversible applications of biochar to soil, a preliminary ecotoxicological assessment is desirable.MethodsFirst, we determined the effect of biochar type and rate on early growth of wheat in a soil-less Petri dish bioassay. Second, we investigated the effect of the same biochars on seed germination and early growth of wheat in ten soils with varying texture using a glasshouse bioassay. Finally, we investigated whether these biochars had similar effects on three plant species when grown in one soil.ResultsBiochar type and application rate influenced wheat seed germination and seedling growth in a similar manner in both the soil-less Petri dish and soil-based bioassay. Germination and early root growth of mung bean and subterranean clover differed from that of wheat in response to the five biochars.ConclusionsWe recommend use of the soil-less Petri dish bioassay as a rapid and simple preliminary test to identify potential toxicity of biochars on seed germination and early plant growth prior to biochar application to soil.
Crop & Pasture Science | 2007
Zakaria M. Solaiman; Timothy D. Colmer; Stephen Loss; Bob Thomson; Kadambot H. M. Siddique
PurposeBiochar, the by-product of thermal decomposition of organic materials in an oxygen-limited environment, is increasingly being investigated due to its potential benefits for soil health, crop yield, carbon (C) sequestration, and greenhouse gas (GHG) mitigation.Materials and methodsIn this review, we discuss the potential role of biochar for improving crop yields and decreasing the emission of greenhouse gases, along with the potential risks involved with biochar application and strategies to avoid these risks.Results and discussionBiochar soil amendment improves crop productivity mainly by increasing nutrient use efficiency and water holding capacity. However, improvements to crop production are often recorded in highly degraded and nutrient-poor soils, while its application to fertile and healthy soils does not always increase crop yield. Since biochars are produced from a variety of feedstocks, certain contaminants can be present. Heavy metals in biochar may affect plant growth as well as rhizosphere microbial and faunal communities and functions. Biochar manufacturers should get certification that their products meet International Biochar Initiative (IBI) quality standards (basic utility properties, toxicant assessment, advanced analysis, and soil enhancement properties).ConclusionsThe long-term effects of biochar on soil functions and its fate in different soil types require immediate attention. Biochar may change the soil biological community composition and abundance and retain the pesticides applied. As a consequence, weed control in biochar-amended soils may be difficult as preemergence herbicides may become less effective.
Pedosphere | 2015
Paul Blackwell; Stephen Joseph; Paul G Munroe; Hossain M. Anawar; Paul Storer; R. J. Gilkes; Zakaria M. Solaiman
Transient waterlogging reduces the yield of cool-season grain legumes in several parts of the world. The tolerance of grain legumes to waterlogging may vary between and within species. This study investigated the effects of 7 days of waterlogging and subsequent recovery (10 days) on plant growth to evaluate the variation in tolerance among 7 cool-season grain legume species, in sand culture in glasshouse experiments. Additionally waterlogging tolerance of 6 faba bean genotypes was also evaluated. Tolerance to waterlogging as indicated by root and shoot growth (as % of drained controls) was ranked as follows: faba bean > yellow lupin > grass pea > narrow-leafed lupin > chickpea > lentil > field pea. Faba bean produced adventitious roots and aerenchyma leading to increased root porosity (9% gas volume per unit root volume). Among the 6 faba bean genotypes screened, accession 794 showed the best waterlogging tolerance, but it was also the slowest growing accession, which might have contributed to apparent tolerance (i.e. growth as % drained control). It is concluded that waterlogging tolerance in grain legumes varied between and within species, with faba bean being the most tolerant. The variation in tolerance identified within the limited set of faba bean genotypes evaluated suggests scope for further genetic improvement of tolerance in this species.
Pedosphere | 2015
Hossain M. Anawar; Farjana Akter; Zakaria M. Solaiman; Vladimir Strezov
The high price of synthetic fertilisers and the price barrier for biochar as a soil amendment have encouraged the exploration of using biochar in fertiliser replacement formulations. Biochars coupled with fertilisers can be applied at lower application rates to achieve benefits in plant growth and nutrition, as well as soil biological fertility. It is necessary to evaluate the use of biochar as a fertiliser substitute. Therefore, this study investigated the comparative influences of biochars, including Acacia saligna (AS), Simcoa jarrah (SJ) and Wundowie jarrah (WJ), mineral fertiliser with microbes (MF + M), biochar-mineral complex (BMC) and their combination on mycorrhizal colonisation, growth and nutrition of wheat in a glasshouse experiment and sorghum in field conditions. BMC + MF + M treatment produced higher mycorrhizal colonisation than MF + M alone, indicating that BMC had a significant role in increasing mycorrhizal colonisation. SJ (treated with acetic acid) and MF + M treatments, as well as AS + MF + M application, showed similar effects on mycorrhizal colonisation, but lower colonisation than the BMC + MF + M treatment. Overall, the BMC + MF + M treatment supported the maximum shoot, root and total plant dry weight followed by AS + MF + M and WJ + MF + M. The MF + M treatment had the maximum shoot N and K concentrations, while BMC + MF + M application had the maximum shoot P concentration. AS + MF + M and WJ + MF + M treatments supported the maximum N uptake by wheat shoots, while BMC + MF + M supported the maximum P uptake. The results showed that biochars and BMCs could increase mycorrhizal colonisation, plant growth and nutrient uptake of wheat, particularly N, P, K, S and Zn. The field experiment confirmed that BMC application at a rate of 300 kg ha−1 could increase the yield of irrigated sorghum on a loam soil and provide better applied P use efficiency compared to a water-soluble fertiliser alone. These results indicated that biochar-based fertilisers might increase the resilience and sustainability of dryland cropping in environments such as in Western Australia and warrant further field evaluation.
Pedosphere | 2015
Stephen Joseph; Hossain M. Anawar; Paul Storer; Paul Blackwell; Chee Chia; Yun Lin; Paul G Munroe; Scott W. Donne; Josip Horvat; Jianli Wang; Zakaria M. Solaiman
Abstract Mine tailings, waste rock piles, acid mine drainage, industrial wastewater, and sewage sludge have contaminated a vast area of cultivable and fallow lands, with a consequence of deterioration of soil and water quality and watercourses due to the erosion of contaminated soils for absence of vegetative cover. High concentrations of toxic elements, organic contaminants, acidic soils, and harsh climatic conditions have made it difficult to re-establish vegetation and produce crops there. Recently, a significant body of work has focussed on the suitability and potentiality of biochar as a soil remediation tool that increases seed emergence, soil and crop productivity, above ground biomass, and vegetation cover on mine tailings, waste rock piles, and industrial and sewage waste-contaminated soils by increasing soil nutrients and water-holding capacity, amelioration of soil acidity, and stimulation of microbial diversity and functions. This review addresses: i) the functional properties of biochar, and microbial cycling of nutrients in soil; ii) bioremediation, especially phytoremediation of mine tailings, industrial waste, sewage sludge, and contaminated soil using biochar; iii) impact of biochar on reduction of acid production, acid mine drainage treatment, and geochemical dynamics in mine tailings; and iv) treatment of metal and organic contaminants in soils using biochar, and restoration of degraded land.
Pedosphere | 2015
Stephen Joseph; Doug Pow; Kathy Dawson; David R. G. Mitchell; Aditya Rawal; James M. Hook; Sarasadat Taherymoosavi; Lukas Van Zwieten; Joshua Rust; Scott W. Donne; Paul G Munroe; Ben Pace; Ellen R. Graber; Torsten Thomas; Shaun Nielsen; Jun Ye; Yun Lin; Genxing Pan; Lianqing Li; Zakaria M. Solaiman
Abstract At present, there is little commercial sale of biochar, since farmers find they can not gain a return on their investment in this amendment in the first few years after its application, because of the high cost associated with large application rates. To overcome this constraint, development of artificially aged enriched biochar-mineral complexes (BMCs), having a higher mineral content, surface functionality, exchangeable cations, high concentration of magnetic iron (Fe) nanoparticles, and higher water-extractable organic compounds has been undertaken by a combined team of researchers and a commercial company. Two biochars produced under different pyrolysis conditions were activated with a phosphoric acid treatment. A mixture of clay, chicken litter, and minerals were added to the biochar, and then this composite was torrefied at either 180 or 220 °C. In this study a pot experiment was carried out in glasshouse conditions to determine the effects of four different BMCs, with different formulations applied at rates of 100 and 200 kg ha−1, on the mycorrhizal colonisation, wheat growth and nutrient uptake, and soil quality improvement. It was found that the phosphorus (P) and nitrogen uptake in wheat shoots were significantly greater for a low application rate of BMCs (100 kg ha−1). The present formulation of BMC was effective in enhancing growth of wheat at low application rate (100 kg ha−1). The increase in growth appeared due to an increase in P uptake in the plants that could be partly attributed to an increase in mycorrhizal colonisation and partly due to the properties of the BMC.