Hossein Ghanbari
Tehran University of Medical Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hossein Ghanbari.
Macromolecular Rapid Communications | 2011
Hossein Ghanbari; Brian G. Cousins; Alexander M. Seifalian
Ground-breaking advances in nanomedicine (defined as the application of nanotechnology in medicine) have proposed novel therapeutics and diagnostics, which can potentially revolutionize current medical practice. Polyhedral oligomeric silsesquioxane (POSS) with a distinctive nanocage structure consisting of an inner inorganic framework of silicon and oxygen atoms, and an outer shell of organic functional groups is one of the most promising nanomaterials for medical applications. Enhanced biocompatibility and physicochemical (material bulk and surface) properties have resulted in the development of a wide range of nanocomposite POSS copolymers for biomedical applications, such as the development of biomedical devices, tissue engineering scaffolds, drug delivery systems, dental applications, and biological sensors. The application of POSS nanocomposites in combination with other nanostructures has also been investigated including silver nanoparticles and quantum dot nanocrystals. Chemical functionalization confers antimicrobial efficacy to POSS, and the use of polymer nanocomposites provides a biocompatible surface coating for quantum dot nanocrystals to enhance the efficacy of the materials for different biomedical and biotechnological applications. Interestingly, a family of POSS-containing nanocomposite materials can be engineered either as completely non-biodegradable materials or as biodegradable materials with tuneable degradation rates required for tissue engineering applications. These highly versatile POSS derivatives have created new horizons for the field of biomaterials research and beyond. Currently, the application of POSS-containing polymers in various fields of nanomedicine is under intensive investigation with expectedly encouraging outcomes.
Trends in Biotechnology | 2009
Hossein Ghanbari; Helene Viatge; Asmeret G. Kidane; Gaetano Burriesci; Mehdi Tavakoli; Alexander M. Seifalian
Heart valve (HV) replacements are among the most widely used cardiovascular devices and are in rising demand. Currently, clinically available devices are restricted to slightly modified mechanical and bioprosthetic valves. Polymeric HVs could represent an attractive alternative to the existing prostheses, merging the superior durability of mechanical valves and the enhanced haemodynamic function of bioprosthetic valves. After early unsatisfactory clinical results, polymeric HVs did not reach commercialization, mainly owing to their limited durability. Recent advances in polymers, nanomaterials and surface modification techniques together with the emergence of novel biomaterials have resulted in improved biocompatibility and biostability. Advances in HV design and fabrication methods could also lead to polymeric HVs that are suitable for long-lasting implantation. Considering all these progresses, it is likely that the new generation of polymeric HVs will find successful long-term clinical applications in future.
Acta Biomaterialia | 2009
Asmeret G. Kidane; Gaetano Burriesci; Mohan Edirisinghe; Hossein Ghanbari; Philipp Bonhoeffer; Alexander M. Seifalian
A novel nanocomposite polymer with a polycarbonate soft segment (PCU) and polyhedral oligomeric silsesquioxanes (POSS) nanoparticle (POSS-PCU) has been selected for a synthetic heart valve due to its superior biocompatibility and in vivo biostability. However, the development of synthetic heart valves from polymeric materials requires an understanding of the basic mechanical and surface properties of the polymer. In this study, the mechanical properties of POSS-PCU, including tensile strength, tear strength and hardness, were tested and compared to control (PCU). The surface property was analyzed using contact angle measurement and the resistance to platelet adhesion was also investigated. POSS-PCU (hardness 84+/-0.8 Shore A) demonstrated significantly higher tensile strength 53.6+/-3.4 and 55.9+/-3.9Nmm(-2) at 25 and 37 degrees C, respectively) than PCU (33.8+/-2.1 and 28.8+/-3.4Nmm(-2) at 25 and 37 degrees C, respectively). Tensile strength and elongation at break of POSS-PCU was significantly higher than PCU at both 25 and 37 degrees C (P<0.001). POSS-PCU showed a relatively low Youngs modulus (25.9+/-1.9 and 26.2+/-2.0Nmm(-2)) which was significantly greater in comparison with control PCU (9.1+/-0.9 and 8.4+/-0.5Nmm(-2)) at 25 and 37 degrees C, respectively, with 100mum thickness. There was no significant difference (P>0.05) in tear strength between POSS-PCU and PCU at 25 degrees C. However, tear strength increased significantly (P<0.001) (at 37 degrees C) as the thickness increased from 100microm (51.0+/-3.3Nmm(-1)) to 200microm (63+/-1.5Nmm(-1)). The surface of POSS-PCU was significantly less hydrophilic than that of PCU.
Acta Biomaterialia | 2011
Maqsood Ahmed; Hossein Ghanbari; Brian G. Cousins; George Hamilton; Alexander M. Seifalian
There is a significant worldwide demand for a small calibre vascular graft for use as a bypass or replacement conduit. An important feature in determining the success of a graft is the wall structure, which includes porosity, pore size and pore interconnectivity, as these play a crucial role in determining the long-term patency of a bypass graft. In this study we fabricate a small diameter (<5mm) vascular graft from polyhedral oligomeric silsesquioxane-poly(carbonate urea)urethane (POSS-PCU) via an extrusion, phase inversion method using an automated, custom built machine. Through the dispersion of a porogen, sodium bicarbonate (NaHCO(3)), in controlled concentrations (0-55%) we were able to produce grafts with well-defined pore morphologies. The impact of NaHCO(3) concentration on the structure of the graft wall and its influence on the mechanical and haemocompatibility properties are evaluated here. Scanning electron microscopy and mercury porosimetry were used to characterise graft structure. Atomic force microscopy elucidated any changes in surface morphology. The addition of NaHCO(3) improved the pore interconnectivity and increasing the concentration of NaHCO(3) led to grafts with rougher surfaces and larger pore sizes. The ultimate tensile strength and suture retention decreased with increasing concentrations of NaHCO(3), while graft compliance increased. To evaluate haemocompatibility platelets and peripheral blood mononuclear cells (PBMC) were incubated on a range of different graft samples. Platelet adhesion, PBMC surface receptor expression (CD14, CD86, CD69 and HLA-DR) and cytokine release (PF4, IL-1β, IL-6, IL-10, TNFα) were all measured. Increasing numbers of platelets adhered to grafts produced with no NaHCO(3), which exhibited a smooth surface morphology, and PBMC adherent on these grafts expressed higher levels of CD14 and CD86. Whilst the different graft samples induced varying levels of cytokine secretion in vitro, no distinct pattern suggesting a non-trivial relationship was observed.
International Journal of Nanomedicine | 2011
Hossein Ghanbari; Achala de Mel; Alexander M. Seifalian
Revolutionary advances in nanotechnology propose novel materials with superior properties for biomedical application. One of the most promising nanomaterials for biomedical application is polyhedral oligomeric silsesquioxane (POSS), an amazing nanocage consisting of an inner inorganic framework of silicon and oxygen atoms and an outer shell of organic groups. The unique properties of this nanoparticle has led to the development of a wide range of nanostructured copolymers with significantly enhanced properties including improved mechanical, chemical, and physical characteristics. Since POSS nanomaterials are highly biocompatible, biomedical application of POSS nanostructures has been intensely explored. One of the most promising areas of application of POSS nanomaterials is the development of cardiovascular implants. The incorporation of POSS into biocompatible polymers has resulted in advanced nanocomposite materials with improved hemocompatibility, antithrombogenicity, enhanced mechanical and surface properties, calcification resistance, and reduced inflammatory response, which make these materials the material of choice for cardiovascular implants. These highly versatile POSS derivatives have opened new horizons to the field of cardiovascular implant. Currently, application of POSS containing polymers in the development of new generation cardiovascular implants including heart valve prostheses, bypass grafts, and coronary stents is under intensive investigation, with encouraging outcomes.
Acta Biomaterialia | 2010
Hossein Ghanbari; Asmeret G. Kidane; Gaetano Burriesci; Bala Ramesh; Arnold Darbyshire; Alexander M. Seifalian
Calcification currently represents a major cause of failure of biological tissue heart valves. It is a complex phenomenon influenced by a number of biochemical and mechanical factors. Recent advances in material science offer new polymers with improved properties, potentially suitable for synthetic leaflets heart valves manufacturing. In this study, the calcification-resistance efficacy and mechanical and surface properties of a new nanocomposite polymeric material (polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane; POSS-PCU) which has been developed by our group are assessed by means of in vitro testing. In particular, thin sheets of nanocomposite, glutaraldehyde-fixed bovine pericardium (BP) and polyurethane (PU) were exposed to a calcium solution into a specially designed in vitro accelerated physiological pulsatile pressure system for a period of 31days and a total of 4×10(7) cycles. The samples were investigated for signs of calcification after exposure to calcium solution by means of X-ray, microscopic and chemical inspections. Mechanical and surface properties were also studied using stress-strain behaviour and surface morphology and hydrophobicity. Comparison shows that, in the experimental conditions, the level of calcification for the nanocomposite is considerably lower than for the fixed BP (p=0.008) and PU samples (p=0.015). Also, mechanical properties were unchanged in POSS-PCU, while there was a significant deterioration in PU samples (p<0.05). Hydrophobicity was significantly reduced in both the POSS-PCU and PU samples (p<0.0001). However, the POSS-PCU nanocomposite remained more hydrophobic than the PU sample (p<0.0001). Less platelet adhered to the POSS-PCU compared to the PU (p<0.0001). These results indicate that the use of this nanocomposite in synthetic leaflets heart valves may lead to potential advantages in terms of long-term performances and durability.
World Journal of Surgery | 2012
Radoslaw A. Rippel; Hossein Ghanbari; Alexander M. Seifalian
BackgroundHeart valve disease is currently a growing problem, and demand for heart valve replacement is predicted to increase significantly in the future. Existing “gold standard” mechanical and biological prosthesis offers survival at a cost of significantly increased risks of complications. Mechanical valves may cause hemorrhage and thromboembolism, whereas biologic valves are prone to fibrosis, calcification, degeneration, and immunogenic complications.MethodsA literature search was performed to identify all relevant studies relating to tissue-engineered heart valve in life sciences using the PubMed and ISI Web of Knowledge databases.DiscussionTissue engineering is a new, emerging alternative, which is reviewed in this paper. To produce a fully functional heart valve using tissue engineering, an appropriate scaffold needs to be seeded using carefully selected cells and proliferated under conditions that resemble the environment of a natural human heart valve. Bioscaffold, synthetic materials, and preseeded composites are three common approaches of scaffold formation. All available evidence suggests that synthetic scaffolds are the most suitable material for valve scaffold formation. Different cell sources of stem cells were used with variable results. Mesenchymal stem cells, fibroblasts, myofibroblasts, and umbilical blood stem cells are used in vitro tissue engineering of heart valve. Alternatively scaffold may be implanted and then autoseeded in vivo by circulating endothelial progenitor cells or primitive circulating cells from patient’s blood. For that purpose, synthetic heart valves were developed.ConclusionsTissue engineering is currently the only technology in the field with the potential for the creation of tissues analogous to a native human heart valve, with longer sustainability, and fever side effects. Although there is still a long way to go, tissue-engineered heart valves have the capability to revolutionize cardiac surgery of the future.
Journal of Biomechanics | 2012
Benyamin Rahmani; S Tzamtzis; Hossein Ghanbari; Gaetano Burriesci; Alexander M. Seifalian
Synthetic leaflet heart valves have been widely studied as possible alternatives to the current mechanical and bioprosthetic valves. Assessing the in vitro hydrodynamic function of these prostheses is of great importance to predict their hemodynamic behaviour prior to implantation. This study introduces an innovative concept of a low-profile semi-stented surgical aortic valve (SSAV) made of a novel nanocomposite polyurethane with a polycarbonate soft segment (PCU) and polyhedral oligomeric silsesquioxane (POSS) nanoparticles covalently bonded as a pendant cage to the hard segment. The POSS-PCU is already used in surgical implants, including lacrimal duct, bypass graft, and recently, a tracheal replacement. Nine valves of three leaflet thicknesses (100, 150 and 200 μm) and 21 mm internal diameter were prepared using an automated dip-coating procedure, and assessed in vitro for their hydrodynamic performance on a pulse duplicator system. A commercially available porcine bioprosthetic valve (Epic™, St. Jude Medical) of equivalent size was selected as a control model. Compared to the bioprosthetic valve, the SSAVs showed a considerably lower transvalvular pressure drop and larger effective orifice area (EOA). They were also characterised by a lower systolic energy loss, especially at high cardiac outputs. The leaflet thickness was found to significantly affect the hydrodynamics of these valves (P<0.01). The SSAVs with 100 μm leaflets demonstrated improved flow characteristics compared to the bioprosthetic valve. The enhanced hydrodynamic function of the SSAV suggests that the proposed design together with the advanced POSS-PCU material can represent a significant step towards the introduction of polyurethane valves into the clinical application.
Artificial Cells Nanomedicine and Biotechnology | 2017
Mahdi Adabi; Majid Naghibzadeh; Mohsen Adabi; Mohammad Ali Zarrinfard; Seyedeh Sara Esnaashari; Alexander M. Seifalian; Reza Faridi-Majidi; Hammed T. Aiyelabegan; Hossein Ghanbari
Abstract There has been huge interest in applications of nanomaterials in biomedical science, including diagnosis, drug delivery, and development of human organs. Number of these nanomaterials has been already studied in human or at pre-clinical trial. There is a growing concern on potential toxicity and adverse effects of nanomaterials on human health, including lack of standard method of assessment of toxicology of these materials. Our investigation indicated that the bare and small nanoparticle have higher toxicity than modified and bulk materials, respectively. In addition, spherical nanoparticles have less toxicity than rod nanoparticles due to immune response of body.
International Journal of Polymeric Materials | 2015
Majid Salehi; Mahdi Naseri Nosar; Amir Amani; Mahmoud Azami; Shima Tavakol; Hossein Ghanbari
The aim of this work was to prepare the scaffolds of pure poly (L-lactic acid) 3% (w/v), pure chitosan 3% (w/v), and PLLA/chitosan blend (1:5) 3% (w/v) using TIPS method and investigate their properties and application in tissue engineering. An in vitro degradation study of scaffolds showed the addition of chitosan to PLLA not only increased its degradation rate, but also slowed down its pH value reduction. Addition of chitosan to PLLA increased hydrophilicity, porosity, compressive properties, and cell viability of the scaffolds. The results indicate that among all scaffolds, the most appropriate candidate for tissue engineering is PLLA/chitosan blend. GRAPHICAL ABSTRACT