Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Houmam Kafa is active.

Publication


Featured researches published by Houmam Kafa.


ACS Nano | 2014

Polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo.

Riham I. El-Gogary; Noelia Rubio; Julie Tzu-Wen Wang; Wafa’ T. Al-Jamal; Maxime Bourgognon; Houmam Kafa; Muniba Naeem; Rebecca Klippstein; Vincenzo Abbate; Frederic Leroux; Sara Bals; Gustaaf Van Tendeloo; Amany O. Kamel; Gehanne A.S. Awad; Nahed D. Mortada; Khuloud T. Al-Jamal

In this work we describe the formulation and characterization of chemically modified polymeric nanocapsules incorporating the anticancer drug, quercetin, for the passive and active targeting to tumors. Folic acid was conjugated to poly(lactide-co-glycolide) (PLGA) polymer to facilitate active targeting to cancer cells. Two different methods for the conjugation of PLGA to folic acid were employed utilizing polyethylene glycol (PEG) as a spacer. Characterization of the conjugates was performed using FTIR and (1)H NMR studies. The PEG and folic acid content was independent of the conjugation methodology employed. PEGylation has shown to reduce the size of the nanocapsule; moreover, zeta-potential was shown to be polymer-type dependent. Comparative studies on the cytotoxicity and cellular uptake of the different formulations by HeLa cells, in the presence and absence of excess folic acid, were carried out using MTT assay and Confocal Laser Scanning Microscopy, respectively. Both results confirmed the selective uptake and cytotoxicity of the folic acid targeted nanocapsules to the folate enriched cancer cells in a folate-dependent manner. Finally, the passive tumor accumulation and the active targeting of the nanocapsules to folate-expressing cells were confirmed upon intravenous administration in HeLa or IGROV-1 tumor-bearing mice. The developed nanocapsules provide a system for targeted delivery of a range of hydrophobic anticancer drugs in vivo.


Biomaterials | 2015

The interaction of carbon nanotubes with an in vitro blood-brain barrier model and mouse brain in vivo

Houmam Kafa; Julie Tzu-Wen Wang; Noelia Rubio; Kerrie Venner; Glenn Anderson; Elzbieta Pach; Belén Ballesteros; Jane E. Preston; N. Joan Abbott; Khuloud T. Al-Jamal

Carbon nanotubes (CNTs) are a novel nanocarriers with interesting physical and chemical properties. Here we investigate the ability of amino-functionalized multi-walled carbon nanotubes (MWNTs-NH3+) to cross the Blood-Brain Barrier (BBB) in vitro using a co-culture BBB model comprising primary porcine brain endothelial cells (PBEC) and primary rat astrocytes, and in vivo following a systemic administration of radiolabelled f-MWNTs. Transmission Electron microscopy (TEM) confirmed that MWNTs-NH3+ crossed the PBEC monolayer via energy-dependent transcytosis. MWNTs-NH3+ were observed within endocytic vesicles and multi-vesicular bodies after 4 and 24 h. A complete crossing of the in vitro BBB model was observed after 48 h, which was further confirmed by the presence of MWNTs-NH3+ within the astrocytes. MWNT-NH3+ that crossed the PBEC layer was quantitatively assessed using radioactive tracers. A maximum transport of 13.0 ± 1.1% after 72 h was achieved using the co-culture model. f-MWNT exhibited significant brain uptake (1.1 ± 0.3% injected dose/g) at 5 min after intravenous injection in mice, after whole body perfusion with heparinized saline. Capillary depletion confirmed presence of f-MWNT in both brain capillaries and parenchyma fractions. These results could pave the way for use of CNTs as nanocarriers for delivery of drugs and biologics to the brain, after systemic administration.


Advanced Functional Materials | 2014

Magnetically Decorated Multiwalled Carbon Nanotubes as Dual MRI and SPECT Contrast Agents

Julie Tzu-Wen Wang; Laura Cabana; Maxime Bourgognon; Houmam Kafa; Andrea Protti; Kerrie Venner; Ajay M. Shah; Jane K. Sosabowski; Stephen J. Mather; Anna Roig; Xiaoxing Ke; Gustaaf Van Tendeloo; Rafael T. M. de Rosales; Gerard Tobias; Khuloud T. Al-Jamal

Carbon nanotubes (CNTs) have been proposed as one of the most promising nanomaterials to be used in biomedicine for their applications in drug/gene delivery as well as biomedical imaging. The present study developed radio-labeled iron oxide decorated multi-walled CNTs (MWNT) as dual magnetic resonance (MR) and single photon emission computed tomography (SPECT) imaging agents. Hybrids containing different amounts of iron oxide were synthesized by in situ generation. Physicochemical characterisations revealed the presence of superparamagnetic iron oxide nanoparticles (SPION) granted the magnetic properties of the hybrids. Further comprehensive examinations including high resolution transmission electron microscopy (HRTEM), fast Fourier transform simulations (FFT), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) assured the conformation of prepared SPION as γ-Fe2O3. High r2 relaxivities were obtained in both phantom and in vivo MRI compared to the clinically approved SPION Endorem®. The hybrids were successfully radio-labeled with technetium-99m through a functionalized bisphosphonate and enabled SPECT/CT imaging and γ-scintigraphy to quantitatively analyze the biodistribution in mice. No abnormality was found by histological examination and the presence of SPION and MWNT were identified by Perls stain and Neutral Red stain, respectively. TEM images of liver and spleen tissues showed the co-localization of SPION and MWNT within the same intracellular vesicles, indicating the in vivo stability of the hybrids after intravenous injection. The results demonstrated the capability of the present SPION-MWNT hybrids as dual MRI and SPECT contrast agents for in vivo use.


Journal of Controlled Release | 2016

Translocation of LRP1 targeted carbon nanotubes of different diameters across the blood–brain barrier in vitro and in vivo

Houmam Kafa; Julie Tzu-Wen Wang; Noelia Rubio; Rebecca Klippstein; Pedro M. Costa; Hatem Hassan; Jane K. Sosabowski; Sukhvinder S. Bansal; Jane E. Preston; N. Joan Abbott; Khuloud T. Al-Jamal

Brain glioblastoma and neurodegenerative diseases are still largely untreated due to the inability of most drugs to cross the blood–brain barrier (BBB). Nanoparticles have emerged as promising tools for drug delivery applications to the brain; in particular carbon nanotubes (CNTs) that have shown an intrinsic ability to cross the BBB in vitro and in vivo. Angiopep-2 (ANG), a ligand for the low-density lipoprotein receptor-related protein-1 (LRP1), has also shown promising results as a targeting ligand for brain delivery using nanoparticles (NPs). Here, we investigate the ability of ANG-targeted chemically-functionalised multi-walled carbon nanotubes (f-MWNTs) to cross the BBB in vitro and in vivo. ANG was conjugated to wide and thin f-MWNTs creating w-MWNT-ANG and t-MWNT-ANG, respectively. All f-MWNTs were radiolabelled to facilitate quantitative analyses by γ-scintigraphy. ANG conjugation to f-MWNTs enhanced BBB transport of w- and t-MWNTs-ANG compared to their non-targeted equivalents using an in vitro co-cultured BBB model consisting of primary porcine brain endothelial cells (PBEC) and primary rat astrocytes. Additionally, following intravenous administration w-MWNTs-ANG showed significantly higher whole brain uptake than the non-targeted w-MWNT in vivo reaching ~ 2% injected dose per g of brain (%ID/g) within the first hour post-injection. Furthermore, using a syngeneic glioma model, w-MWNT-ANG showed enhanced uptake in glioma brain compared to normal brain at 24 h post-injection. t-MWNTs-ANG, on the other hand, showed higher brain accumulation than w-MWNTs. However, no significant differences were observed between t-MWNT and t-MWNT-ANG indicating the importance of f-MWNTs diameter towards their brain accumulation. The inherent brain accumulation ability of f-MWNTs coupled with improved brain-targeting by ANG favours the future clinical applications of f-MWNT-ANG to deliver active therapeutics for brain glioma therapy.


Journal of Controlled Release | 2016

Kinetics of functionalised carbon nanotube distribution in mouse brain after systemic injection: Spatial to ultra-structural analyses

Julie Tzu-Wen Wang; Noelia Rubio; Houmam Kafa; Enrica Venturelli; Chiara Fabbro; Cécilia Ménard-Moyon; Tatiana Da Ros; Jane K. Sosabowski; Alastair David Griffiths Lawson; Martyn K. Robinson; Maurizio Prato; Alberto Bianco; Frederic Festy; Jane E. Preston; Kostas Kostarelos; Khuloud T. Al-Jamal

Earlier studies proved the success of using chemically functionalised multi-walled carbon nanotubes (f-MWNTs) as nanocarriers to the brain. Little insight into the kinetics of brain distribution of f-MWNTs in vivo has been reported. This study employed a wide range of qualitative and quantitative techniques with the aim of shedding the light on f-MWNTs brain distribution following intravenous injection. γ-Scintigraphy quantified the uptake of studied radiolabelled f-MWNT in the whole brain parenchyma and capillaries while 3D-single photon emission computed tomography/computed tomography imaging and autoradiography illustrated spatial distribution within various brain regions. Raman and multiphoton luminescence together with transmission electron microscopy confirmed the presence of intact f-MWNT in mouse brain, in a label-free manner. The results evidenced the presence of f-MWNT in mice brain parenchyma, in addition to brain endothelium. Such information on the rate and extent of regional and cellular brain distribution is needed before further implementation into neurological therapeutics can be made.


Chemical Communications | 2015

Synthesis of double-clickable functionalised graphene oxide for biological applications.

Kuo-Ching Mei; Noelia Rubio; Pedro M. Costa; Houmam Kafa; Vincenzo Abbate; Frederic Festy; Sukhvinder S. Bansal; Robert C. Hider; Khuloud T. Al-Jamal

Azide- and alkyne-double functionalised graphene oxide (Click2 GO) was synthesised and characterised with ATR-FTIR, TGA, and Raman spectroscopy.


ACS Applied Materials & Interfaces | 2015

Organic Solvent-Free, One-Step Engineering of Graphene-Based Magnetic-Responsive Hybrids Using Design of Experiment-Driven Mechanochemistry.

Kuo-Ching Mei; Yukuang Guo; Jie Bai; Pedro M. Costa; Houmam Kafa; Andrea Protti; Robert C. Hider; Khuloud T. Al-Jamal

In this study, we propose an organic solvent-free, one-step mechanochemistry approach to engineer water-dispersible graphene oxide/superparamagnetic iron oxide (GO/SPIOs) hybrids, for biomedical applications. Although mechanochemistry has been proposed in the graphene field for applications such as drug loading, exfoliation or polymer-composite formation, this is the first study to report mechanochemistry for preparation of GO/SPIOs hybrids. The statistical design of experiment (DoE) was employed to control the process parameters. DoE has been used to control formulation processes of other types of nanomaterials. The implementation of DoE for controlling the formulation processes of graphene-based nanomaterials is, however, novel. DoE approach could be of advantage as one can tailor GO-based hybrids of predicted yields and compositions. Hybrids were characterized by TEM, AFM FT-IR, Raman spectroscopy, and TGA. The dose–response magnetic resonance (MR) properties were confirmed by MR imaging of phantoms. The biocompatibility of the hybrids with A549 and J774 cell lines was confirmed by the modified LDH assay.


International Review of Neurobiology | 2016

Current Perspective of Carbon Nanotubes Application in Neurology

Houmam Kafa; Julie Tzu-Wen Wang; Khuloud T. Al-Jamal

The recent advances in nanotechnology have allowed new fields of research to investigate cutting edge brain-specific therapies and to tackle the complex brain-related disorders. The blood-brain barrier (BBB) is a major obstacle for drug delivery to the brain resulting in only few drugs reaching the market to tackle brain disorders. Nanoparticles (NPs) provide a flexible platform for conjugating drugs and targeting ligands and have been extensively researched to facilitate BBB crossing and effective delivery to the brain. In addition, the inherent properties of NPs are being utilized to facilitate other therapeutic possibilities. One example is carbon nanotubes (CNTs), which exhibit several attractive characteristics allowing their use in the brain environment. The properties include a high aspect ratio, the ability to penetrate biological membranes due to their tubular shape and their infrared absorption properties. In this chapter, we review major advances in using CNTs for treating brain tumor and degenerative diseases with special focus on their abilities to cross the BBB following systemic administration, which is the major obstacle for most other NPs.


Chemical Communications | 2015

Multiphoton luminescence imaging of chemically functionalized multi-walled carbon nanotubes in cells and solid tumors.

Noelia Rubio; Liisa M. Hirvonen; E.Z. Chong; Julie Tzu-Wen Wang; Maxime Bourgognon; Houmam Kafa; Hatem Hassan; Wafa’ T. Al-Jamal; David McCarthy; Christer Hogstrand; Frederic Festy; Khuloud T. Al-Jamal


Langmuir | 2014

Production of water-soluble few-layer graphene mesosheets by dry milling with hydrophobic drug.

Noelia Rubio; Rui Serra-Maia; Houmam Kafa; Kuo-Ching Mei; Elzbieta Pach; William Luckhurst; Mire Zloh; Frederic Festy; Jonathan P. Richardson; Julian R. Naglik; Belén Ballesteros; Khuloud T. Al-Jamal

Collaboration


Dive into the Houmam Kafa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jane K. Sosabowski

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kerrie Venner

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge