Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Howard D. Lindsay is active.

Publication


Featured researches published by Howard D. Lindsay.


Molecular and Cellular Biology | 2000

Characterization of Schizosaccharomyces pombe Hus1: a PCNA-related protein that associates with Rad1 and Rad9.

Thomas Caspari; Maria Dahlén; Gunilla Kanter-Smoler; Howard D. Lindsay; Kay Hofmann; Konstantinos Papadimitriou; Per Sunnerhagen; Antony M. Carr

ABSTRACT Hus1 is one of six checkpoint Rad proteins required for allSchizosaccharomyces pombe DNA integrity checkpoints. MYC-tagged Hus1 reveals four discrete forms. The main form, Hus1-B, participates in a protein complex with Rad9 and Rad1, consistent with reports that Rad1-Hus1 immunoprecipitation is dependent on the rad9 + locus. A small proportion of Hus1-B is intrinsically phosphorylated in undamaged cells and more becomes phosphorylated after irradiation. Hus1-B phosphorylation is not increased in cells blocked in early S phase with hydroxyurea unless exposure is prolonged. The Rad1–Rad9–Hus1-B complex is readily detectable, but upon cofractionation of soluble extracts, the majority of each protein is not present in this complex. Indirect immunofluorescence demonstrates that Hus1 is nuclear and that this localization depends on Rad17. We show that Rad17 defines a distinct protein complex in soluble extracts that is separate from Rad1, Rad9, and Hus1. However, two-hybrid interaction, in vitro association and in vivo overexpression experiments suggest a transient interaction between Rad1 and Rad17.


Molecular and Cellular Biology | 1997

Role of Schizosaccharomyces pombe RecQ Homolog, Recombination, and Checkpoint Genes in UV Damage Tolerance

Johanne M. Murray; Howard D. Lindsay; Caroline A. Munday; Antony M. Carr

The cellular responses to DNA damage are complex and include direct DNA repair pathways that remove the damage and indirect damage responses which allow cells to survive DNA damage that has not been, or cannot be, removed. We have identified the gene mutated in the rad12.502 strain as a Schizosaccharomyces pombe recQ homolog. The same gene (designated rqh1) is also mutated in the hus2.22 mutant. We show that Rqhl is involved in a DNA damage survival mechanism which prevents cell death when UV-induced DNA damage cannot be removed. This pathway also requires the correct functioning of the recombination machinery and the six checkpoint rad gene products plus the Cdsl kinase. Our data suggest that Rqh1 operates during S phase as part of a mechanism which prevents DNA damage causing cell lethality. This process may involve the bypass of DNA damage sites by the replication fork. Finally, in contrast with the reported literature, we do not find that rqh1 (rad12) mutant cells are defective in UV dimer endonuclease activity.


The EMBO Journal | 1998

Analysis of Rad3 and Chk1 protein kinases defines different checkpoint responses.

Rui Gonçalo Martinho; Howard D. Lindsay; Gail Flaggs; Anthony J. Demaggio; Merl F. Hoekstra; Antony M. Carr; Nicola J. Bentley

Eukaryotic cells respond to DNA damage and S phase replication blocks by arresting cell‐cycle progression through the DNA structure checkpoint pathways. In Schizosaccharomyces pombe, the Chk1 kinase is essential for mitotic arrest and is phosphorylated after DNA damage. During S phase, the Cds1 kinase is activated in response to DNA damage and DNA replication blocks. The response of both Chk1 and Cds1 requires the six ‘checkpoint Rad’ proteins (Rad1, Rad3, Rad9, Rad17, Rad26 and Hus1). We demonstrate that DNA damage‐dependent phosphorylation of Chk1 is also cell‐cycle specific, occurring primarily in late S phase and G2, but not during M/G1 or early S phase. We have also isolated and characterized a temperature‐sensitive allele of rad3. Rad3 functions differently depending on which checkpoint pathway is activated. Following DNA damage, rad3 is required to initiate but not maintain the Chk1 response. When DNA replication is inhibited, rad3 is required for both initiation and maintenance of the Cds1 response. We have identified a strong genetic interaction between rad3 and cds1, and biochemical evidence shows a physical interaction is possible between Rad3 and Cds1, and between Rad3 and Chk1 in vitro. Together, our results highlight the cell‐cycle specificity of the DNA structure‐dependent checkpoint response and identify distinct roles for Rad3 in the different checkpoint responses.


Journal of Cell Biology | 2002

DNA replication is required for the checkpoint response to damaged DNA in Xenopus egg extracts.

Matthew P. Stokes; Ruth Van Hatten; Howard D. Lindsay; W. Matthew Michael

Alkylating agents, such as methyl methanesulfonate (MMS), damage DNA and activate the DNA damage checkpoint. Although many of the checkpoint proteins that transduce damage signals have been identified and characterized, the mechanism that senses the damage and activates the checkpoint is not yet understood. To address this issue for alkylation damage, we have reconstituted the checkpoint response to MMS in Xenopus egg extracts. Using four different indicators for checkpoint activation (delay on entrance into mitosis, slowing of DNA replication, phosphorylation of the Chk1 protein, and physical association of the Rad17 checkpoint protein with damaged DNA), we report that MMS-induced checkpoint activation is dependent upon entrance into S phase. Additionally, we show that the replication of damaged double-stranded DNA, and not replication of damaged single-stranded DNA, is the molecular event that activates the checkpoint. Therefore, these data provide direct evidence that replication forks are an obligate intermediate in the activation of the DNA damage checkpoint.


Molecular and Cellular Biology | 2003

Molecular Characterization of the Schizosaccharomyces pombe nbs1+ Gene Involved in DNA Repair and Telomere Maintenance

Masaru Ueno; Tomofumi Nakazaki; Yufuko Akamatsu; Kikuo Watanabe; Kazunori Tomita; Howard D. Lindsay; Hideo Shinagawa; Hiroshi Iwasaki

ABSTRACT The human MRN complex is a multisubunit nuclease that is composed of Mre11, Rad50, and Nbs1 and is involved in homologous recombination and DNA damage checkpoints. Mutations of the MRN genes cause genetic disorders such as Nijmegen breakage syndrome. Here we identified a Schizosaccharomyces pombe nbs1+ homologue by screening for mutants with mutations that caused methyl methanesulfonate (MMS) sensitivity and were synthetically lethal with the rad2Δ mutation. Nbs1 physically interacts with the C-terminal half of Rad32, the Schizosaccharomyces pombe Mre11 homologue, in a yeast two-hybrid assay. nbs1 mutants showed sensitivities to γ-rays, UV, MMS, and hydroxyurea and displayed telomere shortening similar to the characteristics of rad32 and rad50 mutants. nbs1, rad32, and rad50 mutant cells were elongated and exhibited abnormal nuclear morphology. These findings indicate that S. pombe Nbs1 forms a complex with Rad32-Rad50 and is required for homologous recombination repair, telomere length regulation, and the maintenance of chromatin structure. Amino acid sequence features and some characteristics of the DNA repair function suggest that the S. pombe Rad32-Rad50-Nbs1 complex has functional similarity to the corresponding MRN complexes of higher eukaryotes. Therefore, S. pombe Nbs1 will provide an additional model system for studying the molecular function of the MRN complex associated with genetic diseases.


Journal of Cell Biology | 2006

Direct requirement for Xmus101 in ATR-mediated phosphorylation of Claspin bound Chk1 during checkpoint signaling

Shan Yan; Howard D. Lindsay; W. Matthew Michael

TopBP1-like proteins, which include Xenopus laevis Xmus101, are required for DNA replication and have been linked to replication checkpoint control. A direct role for TopBP1/Mus101 in checkpoint control has been difficult to prove, however, because of the requirement for replication in generating the DNA structures that activate the checkpoint. Checkpoint activation occurs in X. laevis egg extracts upon addition of an oligonucleotide duplex (AT70). We show that AT70 bypasses the requirement for replication in checkpoint activation. We take advantage of this replication-independent checkpoint system to determine the role of Xmus101 in the checkpoint. We find that Xmus101 is essential for AT70-mediated checkpoint signaling and that it functions to promote phosphorylation of Claspin bound Chk1 by the ataxia-telangiectasia and Rad-3–related (ATR) protein kinase. We also identify a separation-of-function mutant of Xmus101. In extracts expressing this mutant, replication of sperm chromatin occurs normally; however, the checkpoint response to stalled replication forks fails. These data demonstrate that Xmus101 functions directly during signal relay from ATR to Chk1.


Nucleic Acids Research | 2010

The Mre11/Rad50/Nbs1 complex functions in resection-based DNA end joining in Xenopus laevis

Elaine M. Taylor; Sophie M. Cecillon; Antonio Bonis; J. Ross Chapman; Lawrence F. Povirk; Howard D. Lindsay

The repair of DNA double-strand breaks (DSBs) is essential to maintain genomic integrity. In higher eukaryotes, DNA DSBs are predominantly repaired by non-homologous end joining (NHEJ), but DNA ends can also be joined by an alternative error-prone mechanism termed microhomology-mediated end joining (MMEJ). In MMEJ, the repair of DNA breaks is mediated by annealing at regions of microhomology and is always associated with deletions at the break site. In budding yeast, the Mre11/Rad5/Xrs2 complex has been demonstrated to play a role in both classical NHEJ and MMEJ, but the involvement of the analogous MRE11/RAD50/NBS1 (MRN) complex in end joining in higher eukaryotes is less certain. Here we demonstrate that in Xenopus laevis egg extracts, the MRN complex is not required for classical DNA-PK-dependent NHEJ. However, the XMRN complex is necessary for resection-based end joining of mismatched DNA ends. This XMRN-dependent end joining process is independent of the core NHEJ components Ku70 and DNA-PK, occurs with delayed kinetics relative to classical NHEJ and brings about repair at sites of microhomology. These data indicate a role for the X. laevis MRN complex in MMEJ.


Journal of Cell Science | 2003

Delineating the position of rad4+/cut5+ within the DNA-structure checkpoint pathways in Schizosaccharomyces pombe.

Sheila Harris; Caroline Kemplen; Thomas Caspari; Christopher Chan; Howard D. Lindsay; Marius Poitelea; Antony M. Carr; Clive Price

The fission yeast BRCT domain protein Rad4/Cut5 is required for genome integrity checkpoint responses and DNA replication. Here we address the position at which Rad4/Cut5 acts within the checkpoint response pathways. Rad4 is shown to act upstream of the effector kinases Chk1 and Cds1, as both Chk1 phosphorylation and Cds1 kinase activity require functional Rad4. Phosphorylation of Rad9, Rad26 and Hus1 in response to either DNA damage or inhibition of DNA replication are independent of Rad4/Cut5 checkpoint function. Further we show that a novel, epitope-tagged allele of rad4+/cut5+ acts as a dominant suppressor of the checkpoint deficiencies of rad3-, rad26- and rad17- mutants. Suppression results in the restoration of mitotic arrest and is dependent upon the remaining checkpoint Rad proteins and the two effector kinases. High-level expression of the rad4+/cut5+ allele in rad17 mutant cells restores the nuclear localization of Rad9, but this does not fully account for the observed suppression. We conclude from these data that Rad4/Cut5 acts with Rad3, Rad26 and Rad17 to effect the checkpoint response, and a model for its function is discussed.


Nucleic Acids Research | 2013

Depletion of Uhrf1 inhibits chromosomal DNA replication in Xenopus egg extracts

Elaine M. Taylor; Nicola M. Bonsu; R. Jordan Price; Howard D. Lindsay

UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) has a well-established role in epigenetic regulation through the recognition of various histone marks and interaction with chromatin-modifying proteins. However, its function in regulating cell cycle progression remains poorly understood and has been largely attributed to a role in transcriptional regulation. In this study we have used Xenopus laevis egg extracts to analyse Uhrf1 function in DNA replication in the absence of transcriptional influences. We demonstrate that removal of Uhrf1 inhibits chromosomal replication in this system. We further show that this requirement for Uhrf1, or an associated factor, occurs at an early stage of DNA replication and that the consequences of Uhrf1 depletion are not solely due to its role in loading Dnmt1 onto newly replicated DNA. We describe the pattern of Uhrf1 chromatin association before the initiation of DNA replication and show that this reflects functional requirements both before and after origin licensing. Our data demonstrate that the removal of Xenopus Uhrf1 influences the chromatin association of key replication proteins and reveal Uhrf1 as an important new factor required for metazoan DNA replication.


Future Oncology | 2016

DNA replication stress and cancer: cause or cure?

Elaine M. Taylor; Howard D. Lindsay

There is an extensive and growing body of evidence that DNA replication stress is a major driver in the development and progression of many cancers, and that these cancers rely heavily on replication stress response pathways for their continued proliferation. This raises the possibility that the pathways that ordinarily protect cells from the accumulation of cancer-causing mutations may actually prove to be effective therapeutic targets for a wide range of malignancies. In this review, we explore the mechanisms by which sustained proliferation can lead to replication stress and genome instability, and discuss how the pattern of mutations observed in human cancers is supportive of this oncogene-induced replication stress model. Finally, we go on to consider the implications of replication stress both as a prognostic indicator and, more encouragingly, as a potential target in cancer treatment.

Collaboration


Dive into the Howard D. Lindsay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge