Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elaine M. Taylor is active.

Publication


Featured researches published by Elaine M. Taylor.


Molecular and Cellular Biology | 2005

Nse2, a component of the Smc5-6 complex, is a SUMO ligase required for the response to DNA damage.

Emily A. Andrews; Jan Paleček; John Sergeant; Elaine M. Taylor; Alan R. Lehmann; Felicity Z. Watts

ABSTRACT The Schizosaccharomyces pombe SMC proteins Rad18 (Smc6) and Spr18 (Smc5) exist in a high-M r complex which also contains the non-SMC proteins Nse1, Nse2, Nse3, and Rad62. The Smc5-6 complex, which is essential for viability, is required for several aspects of DNA metabolism, including recombinational repair and maintenance of the DNA damage checkpoint. We have characterized Nse2 and show here that it is a SUMO ligase. Smc6 (Rad18) and Nse3, but not Smc5 (Spr18) or Nse1, are sumoylated in vitro in an Nse2-dependent manner, and Nse2 is itself autosumoylated, predominantly on the C-terminal part of the protein. Mutations of C195 and H197 in the Nse2 RING-finger-like motif abolish Nse2-dependent sumoylation. nse2.SA mutant cells, in which nse2.C195S-H197A is integrated as the sole copy of nse2, are viable, whereas the deletion of nse2 is lethal. Smc6 (Rad18) is sumoylated in vivo: the sumoylation level is increased upon exposure to DNA damage and is drastically reduced in the nse2.SA strain. Since nse2.SA cells are sensitive to DNA-damaging agents and to exposure to hydroxyurea, this implicates the Nse2-dependent sumoylation activity in DNA damage responses but not in the essential function of the Smc5-6 complex.


Current Biology | 1997

Atm-dependent interactions of a mammalian Chk1 homolog with meiotic chromosomes

G. Flaggs; A.W. Plug; K.M. Dunks; Kirsten E. Mundt; J.C. Ford; M.R. Quiggle; Elaine M. Taylor; Christoph H. Westphal; T. Ashley; M.F. Hoekstra; Anthony M. Carr

BACKGROUND Checkpoint pathways prevent cell-cycle progression in the event of DNA lesions. Checkpoints are well defined in mitosis, where lesions can be the result of extrinsic damage, and they are critical in meiosis, where DNA breaks are a programmed step in meiotic recombination. In mitotic yeast cells, the Chk1 protein couples DNA repair to the cell-cycle machinery. The Atm and Atr proteins are mitotic cell-cycle proteins that also associate with chromatin during meiotic prophase I. The genetic and regulatory interaction between Atm and mammalian Chk1 appears to be important for integrating DNA-damage repair with cell-cycle arrest. RESULTS We have identified structural homologs of yeast Chk1 in human and mouse. Chk1(Hu/Mo) has protein kinase activity and is expressed in the testis. Chk1 accumulates in late zygotene and pachytene spermatocytes and is present along synapsed meiotic chromosomes. Chk1 localizes along the unsynapsed axes of X and Y chromosomes in pachytene spermatocytes. The association of Chk1 with meiotic chromosomes and levels of Chk1 protein depend upon a functional Atm gene product, but Chk1 is not dependent upon p53 for meiosis I functions. Mapping of CHK1 to human chromosomes indicates that the gene is located at 11q22-23, a region marked by frequent deletions and loss of heterozygosity in human tumors. CONCLUSIONS The Atm-dependent presence of Chk1 in mouse cells and along meiotic chromosomes, and the late pachynema co-localization of Atr and Chk1 on the unsynapsed axes of the paired X and Y chromosomes, suggest that Chk1 acts as an integrator for Atm and Atr signals and may be involved in monitoring the processing of meiotic recombination. Furthermore, mapping of the CHK1 gene to a region of frequent loss of heterozygosity in human tumors at 11q22-23 indicates that the CHK1 gene is a candidate tumor suppressor gene.


Molecular Cell | 2013

PrimPol Bypasses UV Photoproducts during Eukaryotic Chromosomal DNA Replication

Julie Bianchi; Sean G. Rudd; Stanislaw K. Jozwiakowski; Laura J. Bailey; Violetta Soura; Elaine M. Taylor; Irena Stevanovic; Andrew J. Green; Travis H. Stracker; Howard Lindsay; Aidan J. Doherty

Summary DNA damage can stall the DNA replication machinery, leading to genomic instability. Thus, numerous mechanisms exist to complete genome duplication in the absence of a pristine DNA template, but identification of the enzymes involved remains incomplete. Here, we establish that Primase-Polymerase (PrimPol; CCDC111), an archaeal-eukaryotic primase (AEP) in eukaryotic cells, is involved in chromosomal DNA replication. PrimPol is required for replication fork progression on ultraviolet (UV) light-damaged DNA templates, possibly mediated by its ability to catalyze translesion synthesis (TLS) of these lesions. This PrimPol UV lesion bypass pathway is not epistatic with the Pol η-dependent pathway and, as a consequence, protects xeroderma pigmentosum variant (XP-V) patient cells from UV-induced cytotoxicity. In addition, we establish that PrimPol is also required for efficient replication fork progression during an unperturbed S phase. These and other findings indicate that PrimPol is an important player in replication fork progression in eukaryotic cells.


Molecular and Cellular Biology | 2005

Composition and Architecture of the Schizosaccharomyces pombe Rad18 (Smc5-6) Complex

John Sergeant; Elaine M. Taylor; Jan Paleček; Maria Fousteri; Emily A. Andrews; Sara Sweeney; Hideo Shinagawa; Felicity Z. Watts; Alan R. Lehmann

ABSTRACT The rad18 gene of Schizosaccharomyces pombe is an essential gene that is involved in several different DNA repair processes. Rad18 (Smc6) is a member of the structural maintenance of chromosomes (SMC) family and, together with its SMC partner Spr18 (Smc5), forms the core of a high-molecular-weight complex. We show here that both S. pombe and human Smc5 and -6 interact through their hinge domains and that four independent temperature-sensitive mutants of Rad18 (Smc6) are all mutated at the same glycine residue in the hinge region. This mutation abolishes the interactions between the hinge regions of Rad18 (Smc6) and Spr18 (Smc5), as does mutation of a conserved glycine in the hinge region of Spr18 (Smc5). We purified the Smc5-6 complex from S. pombe and identified four non-SMC components, Nse1, Nse2, Nse3, and Rad62. Nse3 is a novel protein which is related to the mammalian MAGE protein family, many members of which are specifically expressed in cancer tissue. In initial steps to understand the architecture of the complex, we identified two subcomplexes containing Rad18-Spr18-Nse2 and Nse1-Nse3-Rad62. The subcomplexes are probably bridged by a weaker interaction between Nse2 and Nse3.


International Journal of Radiation Biology | 2001

Conservation of eukaryotic DNA repair mechanisms.

Alan R. Lehmann; Elaine M. Taylor

PURPOSE To discuss the evolutionary conservation of different DNA repair processes. The proteins that carry out base excision repair show a varying degree of structural conservation, but a high level of functional complementation between species, as might be expected for a sequential pathway. In nucleotide excision repair there is a high degree of structural conservation, but few examples of functional complementation because the process involves multiprotein complexes. Repair by homologous recombination involves proteins that are highly conserved structurally. The process of repair of DNA breaks by non-homologous end-joining is conserved in eukaryotes, but the level of sequence identity of several of the proteins is fairly low and some components involved in man do not appear to have sequence homologues in yeast. CONCLUSIONS All DNA repair processes are highly conserved. The degree of structural and functional conservation varies between the different processes.


Molecular and Cellular Biology | 2008

Identification of the Proteins, Including MAGEG1, That Make Up the Human SMC5-6 Protein Complex

Elaine M. Taylor; Alice C. Copsey; Jessica Hudson; Susanne Vidot; Alan R. Lehmann

ABSTRACT The SMC protein complexes play important roles in chromosome dynamics. The function of the SMC5-6 complex remains unclear, though it is involved in resolution of different DNA structures by recombination. We have now identified and characterized the four non-SMC components of the human complex and in particular demonstrated that the MAGEG1 protein is part of this complex. MAGE proteins play important but as yet undefined roles in carcinogenesis, apoptosis, and brain development. We show that, with the exception of the SUMO ligase hMMS21/hNSE2, depletion of any of the components results in degradation of all the other components. Depletion also confers sensitivity to methyl methanesulfonate. Several of the components are modified by sumoylation and ubiquitination.


Nucleic Acids Research | 2010

The Mre11/Rad50/Nbs1 complex functions in resection-based DNA end joining in Xenopus laevis

Elaine M. Taylor; Sophie M. Cecillon; Antonio Bonis; J. Ross Chapman; Lawrence F. Povirk; Howard D. Lindsay

The repair of DNA double-strand breaks (DSBs) is essential to maintain genomic integrity. In higher eukaryotes, DNA DSBs are predominantly repaired by non-homologous end joining (NHEJ), but DNA ends can also be joined by an alternative error-prone mechanism termed microhomology-mediated end joining (MMEJ). In MMEJ, the repair of DNA breaks is mediated by annealing at regions of microhomology and is always associated with deletions at the break site. In budding yeast, the Mre11/Rad5/Xrs2 complex has been demonstrated to play a role in both classical NHEJ and MMEJ, but the involvement of the analogous MRE11/RAD50/NBS1 (MRN) complex in end joining in higher eukaryotes is less certain. Here we demonstrate that in Xenopus laevis egg extracts, the MRN complex is not required for classical DNA-PK-dependent NHEJ. However, the XMRN complex is necessary for resection-based end joining of mismatched DNA ends. This XMRN-dependent end joining process is independent of the core NHEJ components Ku70 and DNA-PK, occurs with delayed kinetics relative to classical NHEJ and brings about repair at sites of microhomology. These data indicate a role for the X. laevis MRN complex in MMEJ.


Molecular Genetics and Genomics | 1996

5-Azacytidine treatment of the fission yeast leads to cytotoxicity and cell cycle arrest

Elaine M. Taylor; Ramsay J. McFarlane; Clive Price

Abstract A fission yeast gene which shares considerable sequence homology with cytosine-specific DNA methyltransferases has recently been identified. This discovery has led us to investigate the effects of the treatment of fission yeast with the nucleoside analogue 5-azacytidine (5-azaC). 5-AzaC is known to inhibit cytosine methylation as a result of the formation of stable covalent complexes between DNA (cytosine-5) methyltransferases (C5 Mtases) and 5-azaC containing DNA. Here we demonstrate that 5-azaC treatment of Schizosaccharomyces pombe leads to reversible cell cycle arrest at the G2/M transition. This reversible arrest is dependent on the cell cycle checkpoint mechanisms which act to prevent the onset of mitosis in the presence of either damaged or unreplicated DNA. Treatment of S. pombe cell division cycle and checkpoint mutants indicates that 5-azaC causes DNA damage and is likely to inhibit a late stage in DNA replication. The data show that viability in the presence of the drug requires both the DNA damage and the replication checkpoint pathways to be functional. 5-AzaC also elicits a transcriptional response which is associated with DNA damage and the inhibition of DNA replication in fission yeast, and this response is absent in cells carrying G2 checkpoint mutations. The implications of these observations for both the use of 5-azaC in cancer chemotherapy and the existence of cytosine methylation in fission yeast are discussed.


DNA Repair | 2013

SMC6 is an essential gene in mice, but a hypomorphic mutant in the ATPase domain has a mild phenotype with a range of subtle abnormalities

Limei Ju; Jonathan F. Wing; Elaine M. Taylor; Renata M. C. Brandt; Predrag Slijepcevic; Marion Horsch; Birgit Rathkolb; Ildiko Racz; Lore Becker; Wolfgang Hans; Thure Adler; Johannes Beckers; Jan Rozman; Martin Klingenspor; Eckhard Wolf; Andreas Zimmer; Thomas Klopstock; Dirk H. Busch; Valérie Gailus-Durner; Helmut Fuchs; Martin Hrabě de Angelis; Gilbertus van der Horst; Alan R. Lehmann

Smc5-6 is a highly conserved protein complex related to cohesin and condensin involved in the structural maintenance of chromosomes. In yeasts the Smc5-6 complex is essential for proliferation and is involved in DNA repair and homologous recombination. siRNA depletion of genes involved in the Smc5-6 complex in cultured mammalian cells results in sensitivity to some DNA damaging agents. In order to gain further insight into its role in mammals we have generated mice mutated in the Smc6 gene. A complete knockout resulted in early embryonic lethality, demonstrating that this gene is essential in mammals. However, mutation of the highly conserved serine-994 to alanine in the ATP hydrolysis motif in the SMC6 C-terminal domain, resulted in mice with a surprisingly mild phenotype. With the neo gene selection marker in the intron following the mutation, resulting in reduced expression of the SMC6 gene, the mice were reduced in size, but fertile and had normal lifespans. When the neo gene was removed, the mice had normal size, but detailed phenotypic analysis revealed minor abnormalities in glucose tolerance, haematopoiesis, nociception and global gene expression patterns. Embryonic fibroblasts derived from the ser994 mutant mice were not sensitive to killing by a range of DNA damaging agents, but they were sensitive to the induction of sister chromatid exchanges induced by ultraviolet light or mitomycin C. They also accumulated more oxidative damage than wild-type cells.


Nucleic Acids Research | 2013

Depletion of Uhrf1 inhibits chromosomal DNA replication in Xenopus egg extracts

Elaine M. Taylor; Nicola M. Bonsu; R. Jordan Price; Howard D. Lindsay

UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) has a well-established role in epigenetic regulation through the recognition of various histone marks and interaction with chromatin-modifying proteins. However, its function in regulating cell cycle progression remains poorly understood and has been largely attributed to a role in transcriptional regulation. In this study we have used Xenopus laevis egg extracts to analyse Uhrf1 function in DNA replication in the absence of transcriptional influences. We demonstrate that removal of Uhrf1 inhibits chromosomal replication in this system. We further show that this requirement for Uhrf1, or an associated factor, occurs at an early stage of DNA replication and that the consequences of Uhrf1 depletion are not solely due to its role in loading Dnmt1 onto newly replicated DNA. We describe the pattern of Uhrf1 chromatin association before the initiation of DNA replication and show that this reflects functional requirements both before and after origin licensing. Our data demonstrate that the removal of Xenopus Uhrf1 influences the chromatin association of key replication proteins and reveal Uhrf1 as an important new factor required for metazoan DNA replication.

Collaboration


Dive into the Elaine M. Taylor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miria Stefanini

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge