Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Howard R. Gordon is active.

Publication


Featured researches published by Howard R. Gordon.


Applied Optics | 1994

Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm

Howard R. Gordon; Menghua Wang

The second generation of ocean-color-analyzing instruments requires more accurate atmospheric correction than does the Coastal Zone Color Scanner (CZCS), if one is to utilize fully their increased radiometric sensitivity. Unlike the CZCS, the new instruments possess bands in the near infrared (NIR) that are solely for aiding atmospheric correction. We show, using aerosol models, that certain assumptions regarding the spectral behavior of the aerosol reflectance employed in the standard CZCS correction algorithm are not valid over the spectral range encompassing both the visible and the NIR. Furthermore, we show that multiple-scattering effects on the algorithm depend significantly on the aerosol model. Following these observations, we propose an algorithm that utilizes the NIR bands for atmospheric correction to the required accuracy. Examples of the dependence of the error on the aerosol model, the turbidity of the atmosphere, and surface roughness (waves) are provided. The error in the retrieved phytoplankton-pigment concentration (the principal product of ocean-color sensors) induced by errors in the atmospheric correction are shown to be <20% in approximately 90% of the cases examined. Finally, the aerosol thickness (τ(α)) is estimated through a simple extension of the correction algorithm. Simulations suggest that the error in the recovered value of τ(α) should be ≲ 10%.


Applied Optics | 1983

Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates.

Howard R. Gordon; Dennis K. Clark; James W. Brown; Otis B. Brown; Robert H. Evans; William W. Broenkow

The processing algorithms used for relating the apparent color of the ocean observed with the Coastal-Zone Color Scanner on Nimbus-7 to the concentration of phytoplankton pigments (principally the pigment responsible for photosynthesis, chlorophyll a) are developed and discussed in detail. These algorithms are applied to the shelf and slope waters of the Middle Atlantic Bight and also to Sargasso Sea waters. In all, four images are examined, and the resulting pigment concentrations are compared to continuous measurements made along ship tracks. The results suggest that over the 0.08-1.5-mg/m3 range the error in the retrieved pigment concentration is of the order of 30-40% for a variety of atmospheric turbidities. In three direct comparisons between ship-measured and satellite-retrieved values of the water-leaving radiance the atmospheric correction algorithm retrieved the water-leaving radiance with an average error of approximately 10%. This atmospheric correction algorithm does not require any surface measurements for its application.


IEEE Transactions on Geoscience and Remote Sensing | 1998

Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview

David J. Diner; Jewel C. Beckert; Terrence H. Reilly; Carol J. Bruegge; James E. Conel; Ralph A. Kahn; John V. Martonchik; Thomas P. Ackerman; Roger Davies; Siegfried A. W. Gerstl; Howard R. Gordon; Jan-Peter Muller; Ranga B. Myneni; Piers J. Sellers; Bernard Pinty; Michel M. Verstraete

The Multi-angle Imaging SpectroRadiometer (MISR) instrument is scheduled for launch aboard the first of the Earth Observing System (EOS) spacecraft, EOS-AM1. MISR will provide global, radiometrically calibrated, georectified, and spatially coregistered imagery at nine discrete viewing angles and four visible/near-infrared spectral bands. Algorithms specifically developed to capitalize on this measurement strategy will be used to retrieve geophysical products for studies of clouds, aerosols, and surface radiation. This paper provides an overview of the as-built instrument characteristics and the application of MISR to remote sensing of the Earth.


Applied Optics | 1975

Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean.

Howard R. Gordon; Otis B. Brown; Michael M. Jacobs

Monte Carlo simulations of the transfer of radiation in the ocean are used to compute the apparent optical properties of a flat homogeneous ocean as a function of the inherent optical properties. The data are used to find general relationships between the inherent and apparent optical properties for optical depths tau </= 4. The results indicate that the apparent optical properties depend on the phase function only through the back scattering probability. It is shown that these relations can be used with measurements of the upwelling and downwelling irradiance, the beam attenuation coefficient, and the incident radiance distribution to determine the absorption coefficient, the scattering coefficient, and the backward and forward scattering probabilities.


Journal of Geophysical Research | 1997

Atmospheric correction of ocean color imagery in the Earth Observing System era

Howard R. Gordon

Sensors that can be used for the observation of ocean color in NASAs Earth Observing System era (SeaWiFS, MODIS, and MISR) have been designed with 2–4 times the radiometric sensitivity of the proof-of-concept ocean color instrument CZCS (coastal zone color scanner). To realize an improvement in the retrieval of biologically important ocean parameters, e.g., the concentration of the photosynthetic pigment chlorophyll a, from this increased sensitivity, significantly better atmospheric correction than was applied to CZCS is required. Atmospheric correction improvement necessitates the inclusion of the effects of multiple scattering, which are strongly dependent on the aerosol size distribution, concentration, and absorption properties. We review the basic concepts of atmospheric correction over the oceans and provide the details of the algorithms currently being developed for SeaWiFS, MODIS, and MISR. An alternate correction algorithm that could be of significant value in the coastal zone is described for MISR. Related issues such as the influence of aerosol vertical structure in the troposphere, polarization of the light field, sea surface roughness, and oceanic whitecaps on the sea surface are evaluated and plans for their inclusion in the algorithm are described. Unresolved issues, such as the presence of stratospheric aerosol, the appropriateness of the aerosol models used in the assessment of multiple scattering, and the identification of, and difficulties associated with the correction for, the presence of absorbing aerosols, e.g., urban pollution or mineral dust, are identified, and suggestions are provided for their resolution.


Applied Optics | 1975

Estimation of the Depth of Sunlight Penetration in the Sea for Remote Sensing

Howard R. Gordon; W. R. McCluney

The penetration depth of light in the sea is defined for remote sensing purposes as the depth above which 90% of the diffusely reflected irradiance (excluding specular reflectance) originates. It is demonstrated that for a homogeneous ocean, this is the depth at which the downwelling in-water irradiance falls to 1/e of its value at the surface. Penetration depths as a function of wavelength are presented for a variety of water types, and a mean penetration depth z (90) for a broadband sensor is defined and applied to the MSS on ERTS-1. The maximum z (90) expected for ERTS-l is found to be somewhat less than 20 m.


Journal of Geophysical Research | 1997

Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect

Yoram J. Kaufman; Didier Tanré; Howard R. Gordon; Teruyuki Nakajima; J. Lenoble; Robert Frouin; H. Grassl; Benjamin M. Herman; Michael D. King; P. M. Teillet

The launch of ADEOS in August 1996 with POLDER, TOMS, and OCTS instruments on board and the future launch of EOS-AM 1 in mid-1998 with MODIS and MISR instruments on board start a new era in remote sensing of aerosol as part of a new remote sensing of the whole Earth system (see a list of the acronyms in the Notation section of the paper). These platforms will be followed by other international platforms with unique aerosol sensing capability, some still in this century (e.g., ENVISAT in 1999). These international spaceborne multispectral, multiangular, and polarization measurements, combined for the first time with international automatic, routine monitoring of aerosol from the ground, are expected to form a quantum leap in our ability to observe the highly variable global aerosol. This new capability is contrasted with present single-channel techniques for AVHRR, Meteosat, and GOES that although poorly calibrated and poorly characterized already generated important aerosol global maps and regional transport assessments. The new data will improve significantly atmospheric corrections for the aerosol effect on remote sensing of the oceans and be used to generate first real-time atmospheric corrections over the land. This special issue summarizes the science behind this change in remote sensing, and the sensitivity studies and applications of the new algorithms to data from present satellite and aircraft instruments. Background information and a summary of a critical discussion that took place in a workshop devoted to this topic is given in this introductory paper. In the discussion it was concluded that the anticipated remote sensing of aerosol simultaneously from several space platforms with different observation strategies, together with continuous validations around the world, is expected to be of significant importance to test remote sensing approaches to characterize the complex and highly variable aerosol field. So far, we have only partial understanding of the information content and accuracy of the radiative transfer inversion of aerosol information from the satellite data, due to lack of sufficient theoretical analysis and applications to proper field data. This limitation will make the anticipated new data even more interesting and challenging. A main concern is the present inadequate ability to sense aerosol absorption, from space or from the ground. Absorption is a critical parameter for climate studies and atmospheric corrections. Over oceans, main concerns are the effects of white caps and dust on the correction scheme. Future improvement in aerosol retrieval and atmospheric corrections will require better climatology of the aerosol properties and understanding of the effects of mixed composition and shape of the particles. The main ingredient missing in the planned remote sensing of aerosol are spaceborne and ground-based lidar observations of the aerosol profiles.


Applied Optics | 1981

Clear water radiances for atmospheric correction of coastal zone color scanner imagery

Howard R. Gordon; Dennis K. Clark

The possibility that the inherent sea surface spectral radiance of clear water can be computed in the green, yellow, and red regions of the spectrum solely from a knowledge of the solar zenith angle is developed in detail. This concept is tested with experimental data, and the results indicate that the normalized inherent sea surface spectral radiance is constant to within ~10% for Morels Case 1 waters as long as the phytoplankton pigment concentration does not exceed 0.25 mg/m(3). In the same conditions the radiance at 670 nm is <0.012 mW/cm(2) microm sr. A scheme to implement this clear water radiance concept for atmospheric correction of CZCS imagery is presented.


Applied Optics | 1993

Comparison of Numerical Models for Computing Underwater Light Fields

Curtis D. Mobley; Bernard Gentili; Howard R. Gordon; Zhonghai Jin; George W. Kattawar; André Morel; Phillip Reinersman; Knut Stamnes; Robert H. Stavn

Seven models for computing underwater radiances and irradiances by numerical solution of the radiative transfer equation are compared. The models are applied to the solution of several problems drawn from optical oceanography. The problems include highly absorbing and highly scattering waters, scattering by molecules and by particulates, stratified water, atmospheric effects, surface-wave effects, bottom effects, and Raman scattering. The models provide consistent output, with errors (resulting from Monte Carlo statistical fluctuations) in computed irradiances that are seldom larger, and are usually smaller, than the experimental errors made in measuring irradiances when using current oceanographic instrumentation. Computed radiances display somewhat larger errors.


Science | 1980

Nimbus-7 Coastal Zone Color Scanner: System Description and Initial Imagery

Warren A. Hovis; Dennis K. Clark; F. Anderson; Roswell W. Austin; W. H. Wilson; Edward T. Baker; D. Ball; Howard R. Gordon; James L. Mueller; S. Z. El-Sayed; B. Sturm; Robert C. Wrigley; Charles S. Yentsch

The Coastal Zone Color Scanner (CZCS) on Nimbus-7, launched in October 1978, is the only sensor in orbit that is specifically designed to study living marine resources. The initial imagery confirms that CZCS data can be processed to a level that reveals subtle variations in the concentration of phytoplankton pigments. This development has potential applications for the study of large-scale patchiness in phytoplankton distributions, the evolution of spring blooms, water mass boundaries, and mesoscale circulation patterns.

Collaboration


Dive into the Howard R. Gordon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dennis K. Clark

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge