Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hsiang-Tsui Wang is active.

Publication


Featured researches published by Hsiang-Tsui Wang.


Molecular Nutrition & Food Research | 2011

Acrolein induced DNA damage, mutagenicity and effect on DNA repair

Moon-shong Tang; Hsiang-Tsui Wang; Yu Hu; Wei-sheng Chen; Makoto Akao; Zhaohui Feng; Wenwei Hu

Acrolein (Acr) is a ubiquitous environmental contaminant; it also can be generated endogenously by lipid peroxidation. Acr contains a carbonyl group and an olefinic double bond; it can react with many cellular molecules including amino acids, proteins and nucleic acids. In this review article we focus on updating information regarding: (i) Acr-induced DNA damage and methods of detection, (ii) repair of Acr-DNA damage, (iii) mutagenicity of Acr-DNA adducts, (iv) sequence specificity and methylation effect on Acr-DNA adduct formation and (v) the role of Acr in human cancer. We have found that Acr can inhibit DNA repair and induces mutagenic Acr-dG adducts and that the binding spectrum of Acr in the p53 gene in normal human bronchial epithelial cells is similar to the p53 mutational spectrum in lung cancer. Since Acr-DNA adduct has been identified in human lung tissue and Acr causes bladder cancer in human and rat models, we conclude that Acr is a major lung and bladder carcinogen, and its carcinogenicity arises via induction of DNA damage and inhibition of DNA repair.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Melanocytes are deficient in repair of oxidative DNA damage and UV-induced photoproducts

Hsiang-Tsui Wang; Bongkun Choi; Moon-shong Tang

Melanomas occur mainly in sunlight-exposed skin. Xeroderma pigmentosum (XP) patients have 1,000-fold higher incidence of melanoma, suggesting that sunlight-induced “bulky” photoproducts are responsible for melanomagenesis. Sunlight induces a high level of reactive oxygen species in melanocytes (MCs); oxidative DNA damage (ODD) may thus also contribute to melanomagenesis, and XP gene products may participate in the repair of ODD. We examined the effects of melanin on UVA (320–400 nm) irradiation-induced ODD and UV photoproducts and the repair capacity in MC and XP cells for ODD and UV-induced photoproducts. Our findings indicate that UVA irradiation induces a significantly higher amount of formamidopyrimidine glycosylase-sensitive ODD in MCs than in normal human skin fibroblasts (NHSFs). In contrast, UVA irradiation induces an insignificant amount of UvrABC-sensitive sites in either of these two types of cells. We also found that, compared to NHSFs, MCs have a reduced repair capacity for ODD and photoproducts; H2O2 modified- and UVC-irradiated DNAs induce a higher mutation frequency in MCs than in NHSFs; and, XP complementation group A (XPA), XP complementation group C, and XP complementation group G cells are deficient in ODD repair and ODD induces a higher mutation frequency in XPA cells than in NHSFs. These results suggest that: (i) melanin sensitizes UVA in the induction of ODD but not bulky UV photoproducts; (ii) the high susceptibility to UVA-induced ODD and the reduced DNA repair capacity in MCs contribute to carcinogenesis; and (iii) the reduced repair capacity for ODD contributes to the high melanoma incidence in XP patients.


Chemical Research in Toxicology | 2009

Mutagenicity and sequence specificity of acrolein-DNA adducts.

Hsiang-Tsui Wang; Siyi Zhang; Yu Hu; Moon-shong Tang

Acrolein (Acr) is a major toxicant in cigarette smoke (CS); it can interact with DNA forming two major adduct isomers: alpha-OH-Acr-dG and gamma-OH-Acr-dG. Previously, we found that the Acr-DNA binding pattern in the human p53 gene coincides with the p53 mutational pattern in CS-related lung cancer; hence, we proposed that Acr is a major lung cancer etiological agent [ Feng , Z. , Hu , W. , Hu , Y. , and Tang , M.-s. ( 2006 ) Acrolein is a major cigarette-related lung cancer agent: Preferential binding at p53 mutational hotspots and inhibition of DNA repair . Proc. Natl. Acad. Sci. U.S.A. 103 , 15404 - 15409 ]. This hypothesis has been brought into question with recent work that failed to detect Acr-induced mutations in the pSP189 system [ Kim , S. I. , Pfeifer , G. P. , and Besaratinia , A. ( 2007 ) Lack of mutagenicity of acrolein-induced DNA adducts in mouse and human cells . Cancer Res. 67 , 11640 - 116472 ]. To resolve this controversy, we determined the level and the type of Acr-dG formation, and the mutagenicity of Acr-dG adducts in the same pSP189 system. We also mapped the Acr-dG adduct distribution at the nucleotide level and the Acr-dG-induced mutational spectrum in this system. We found that (1) gamma-OH-Acr-dG is the major adduct formed in Acr-modified DNA based on the LC-ESI-MS/MS analysis; (2) the mutation frequency is proportional to the extent of Acr modifications, the majority of which are G:C to T:A and G:C to A:T mutations; and (3) sequences with a run of Gs are the mutational hotspots. Using the UvrABC nuclease incision method to map the Acr-dG distribution in the supF gene sequence, we confirmed that Acr-DNA adducts preferentially form in guanine-rich sequences that are also mutational hotspots. These results reaffirm that Acr-dG adducts are mutagenic and support our hypothesis that Acr is a major etiological agent for CS and cooking fume-related lung cancer.


Journal of Biological Chemistry | 2012

Effect of Carcinogenic Acrolein on DNA Repair and Mutagenic Susceptibility

Hsiang-Tsui Wang; Yu Hu; Dan Tong; Jian Huang; Liya Gu; Xue-Ru Wu; Fung-Lung Chung; Guo Min Li; Moon-shong Tang

Background: Acrolein is highly reactive and abundant in tobacco smoke. Results: Acrolein induces DNA damage, inhibits excision repair and mismatch repair, causes repair protein degradation, and enhances mutagenesis. Conclusion: Acrolein induces DNA damage and inhibits DNA repair that causes mutagenesis and initiates carcinogenesis. Significance: This is the first demonstration that acrolein inhibits DNA repair pathways by induction of repair protein degradation. Acrolein (Acr), a ubiquitous environmental contaminant, is a human carcinogen. Acr can react with DNA to form mutagenic α- and γ-hydroxy-1, N2-cyclic propano-2′-deoxyguanosine adducts (α-OH-Acr-dG and γ-OH-Acr-dG). We demonstrate here that Acr-dG adducts can be efficiently repaired by the nucleotide excision repair (NER) pathway in normal human bronchial epithelia (NHBE) and lung fibroblasts (NHLF). However, the same adducts were poorly processed in cell lysates isolated from Acr-treated NHBE and NHLF, suggesting that Acr inhibits NER. In addition, we show that Acr treatment also inhibits base excision repair and mismatch repair. Although Acr does not change the expression of XPA, XPC, hOGG1, PMS2 or MLH1 genes, it causes a reduction of XPA, XPC, hOGG1, PMS2, and MLH1 proteins; this effect, however, can be neutralized by the proteasome inhibitor MG132. Acr treatment further enhances both bulky and oxidative DNA damage-induced mutagenesis. These results indicate that Acr not only damages DNA but can also modify DNA repair proteins and further causes degradation of these modified repair proteins. We propose that these two detrimental effects contribute to Acr mutagenicity and carcinogenicity.


Carcinogenesis | 2013

Effect of CpG methylation at different sequence context on acrolein- and BPDE-DNA binding and mutagenesis

Hsiang-Tsui Wang; Mao-wen Weng; Wen-chi Chen; Michael Yobin; Jishen Pan; Fung-Lung Chung; Xue-Ru Wu; William N. Rom; Moon-shong Tang

Acrolein (Acr), an α,β-unsaturated aldehyde, is abundant in tobacco smoke and cooking and exhaust fumes. Acr induces mutagenic α- and γ- hydroxy-1,N(2)-cyclic propano-deoxyguanosine adducts in normal human bronchial epithelial cells. Our earlier work has found that Acr-induced DNA damage preferentially occurs at lung cancer p53 mutational hotspots that contain CpG sites and that methylation at CpG sites enhances Acr-DNA binding at these sites. Based on these results, we hypothesized that this enhancement of Acr-DNA binding leads to p53 mutational hotspots in lung cancer. In this study, using a shuttle vector supF system, we tested this hypothesis by determining the effect of CpG methylation on Acr-DNA binding and the mutations in human lung fibroblasts. We found that CpG methylation enhances Acr-induced mutations significantly. Although CpG methylation enhances Acr-DNA binging at all CpG sites, it enhances mutations at selective--TCGA--sites. Similarly, we found that CpG methylation enhances benzo(a)pyrene diol epoxide binding at all -CpG- sites. However, the methylated CpG sequences in which benzo(a)pyrene diol epoxide-induced mutations are enhanced are different from the CpG sequences in which Acr-induced mutations are enhanced. CpG methylation greatly increases Acr-induced G to T and G to A mutation frequency to levels similar to these types of mutations found in the CpG sites in the p53 gene in tobacco smoke-related lung cancer. These results indicate that both CpG sequence context and the chemical nature of the carcinogens are crucial factors for determining the effect of CpG methylation on mutagenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2018

E-cigarette smoke damages DNA and reduces repair activity in mouse lung, heart, and bladder as well as in human lung and bladder cells

Hyun-Wook Lee; Sung-Hyun Park; Mao-wen Weng; Hsiang-Tsui Wang; William C. Huang; Herbert Lepor; Xue Ru Wu; Lung-Chi Chen; Moon-shong Tang

Significance E-cigarette smoke (ECS) delivers nicotine through aerosols without burning tobacco. ECS is promoted as noncarcinogenic. We found that ECS induces DNA damage in mouse lung, bladder, and heart and reduces DNA-repair functions and proteins in lung. Nicotine and its nitrosation product 4-(methylnitrosamine)-1-(3-pyridyl)-1-butanone can cause the same effects as ECS and enhance mutations and tumorigenic cell transformation in cultured human lung and bladder cells. These results indicate that nicotine nitrosation occurs in the lung, bladder, and heart, and that its products are further metabolized into DNA damaging agents. We propose that ECS, through damaging DNA and inhibiting DNA repair, might contribute to human lung and bladder cancer as well as to heart disease, although further studies are required to substantiate this proposal. E-cigarette smoke delivers stimulant nicotine as aerosol without tobacco or the burning process. It contains neither carcinogenic incomplete combustion byproducts nor tobacco nitrosamines, the nicotine nitrosation products. E-cigarettes are promoted as safe and have gained significant popularity. In this study, instead of detecting nitrosamines, we directly measured DNA damage induced by nitrosamines in different organs of E-cigarette smoke-exposed mice. We found mutagenic O6-methyldeoxyguanosines and γ-hydroxy-1,N2-propano-deoxyguanosines in the lung, bladder, and heart. DNA-repair activity and repair proteins XPC and OGG1/2 are significantly reduced in the lung. We found that nicotine and its metabolite, nicotine-derived nitrosamine ketone, can induce the same effects and enhance mutational susceptibility and tumorigenic transformation of cultured human bronchial epithelial and urothelial cells. These results indicate that nicotine nitrosation occurs in vivo in mice and that E-cigarette smoke is carcinogenic to the murine lung and bladder and harmful to the murine heart. It is therefore possible that E-cigarette smoke may contribute to lung and bladder cancer, as well as heart disease, in humans.


Oncotarget | 2015

Cigarette side-stream smoke lung and bladder carcinogenesis: inducing mutagenic acrolein-DNA adducts, inhibiting DNA repair and enhancing anchorage-independent-growth cell transformation

Hyun-Wook Lee; Hsiang-Tsui Wang; Mao-wen Weng; Chiu Chin; William C. Huang; Herbert Lepor; Xue-Ru Wu; William N. Rom; Lung Chi Chen; Moon-shong Tang

Second-hand smoke (SHS) is associated with 20–30% of cigarette-smoke related diseases, including cancer. Majority of SHS (>80%) originates from side-stream smoke (SSS). Compared to mainstream smoke, SSS contains more tumorigenic polycyclic aromatic hydrocarbons and acrolein (Acr). We assessed SSS-induced benzo(a)pyrene diol epoxide (BPDE)- and cyclic propano-deoxyguanosine (PdG) adducts in bronchoalveolar lavage (BAL), lung, heart, liver, and bladder-mucosa from mice exposed to SSS for 16 weeks. In SSS exposed mice, Acr-dG adducts were the major type of PdG adducts formed in BAL (p < 0.001), lung (p < 0.05), and bladder mucosa (p < 0.001), with no significant accumulation of Acr-dG adducts in heart or liver. SSS exposure did not enhance BPDE-DNA adduct formation in any of these tissues. SSS exposure reduced nucleotide excision repair (p < 0.01) and base excision repair (p < 0.001) in lung tissue. The levels of DNA repair proteins, XPC and hOGG1, in lung tissues of exposed mice were significantly (p < 0.001 and p < 0.05) lower than the levels in lung tissues of control mice. We found that Acr can transform human bronchial epithelial and urothelial cells in vitro. We propose that induction of mutagenic Acr-DNA adducts, inhibition of DNA repair, and induction of cell transformation are three mechanisms by which SHS induces lung and bladder cancers.


Chemical Research in Toxicology | 2012

Detection of acrolein-derived cyclic DNA adducts in human cells by monoclonal antibodies

Jishen Pan; Bisola Awoyemi; Zhuoli Xuan; Priya Vohra; Hsiang-Tsui Wang; Marcin Dyba; Emily Greenspan; Ying Fu; Karen Creswell; Lihua Zhang; Deborah L. Berry; Moon-shong Tang; Fung-Lung Chung

Acrolein (Acr) is a ubiquitous environmental pollutant found in cigarette smoke and automobile exhaust. It can also be produced endogenously by oxidation of polyunsaturated fatty acids. The Acr-derived 1,N(2)-propanodeoxyguanosine (Acr-dG) adducts in DNA are mutagenic lesions that are potentially involved in human cancers. In this study, monoclonal antibodies were raised against Acr-dG adducts and characterized using ELISA. They showed strong reactivity and specificity toward Acr-dG, weaker reactivity toward crotonaldehyde- and trans-4-hydroxy-2-nonenal-derived 1,N(2)-propanodeoxyguanosines, and weak or no reactivity toward 1,N(6)-ethenodeoxyadenosine and 8-oxo-deoxyguanosine. Using these antibodies, we developed assays to detect Acr-dG in vivo: first, a simple and quick FACS-based assay for detecting these adducts directly in cells; second, a highly sensitive direct ELISA assay for measuring Acr-dG in cells and tissues using only 1 μg of DNA without DNA digestion and sample enrichment; and third, a competitive ELISA for better quantitative measurement of Acr-dG levels in DNA samples. The assays were validated using Acr-treated HT29 cell DNA samples or calf thymus DNA, and the results were confirmed by LC-MS/MS-MRM. An immunohistochemical assay was also developed to detect and visualize Acr-dG in HT29 cells as well as in human oral cells. These antibody-based methods provide useful tools for the studies of Acr-dG as a cancer biomarker and of the molecular mechanisms by which cells respond to Acr-dG as a ubiquitous DNA lesion.


Oncotarget | 2016

Acrolein preferentially damages nucleolus eliciting ribosomal stress and apoptosis in human cancer cells

Hsiang-Tsui Wang; Tzu-ying Chen; Ching-wen Weng; Chun-hsiang Yang; Moon-shong Tang

Acrolein (Acr) is a potent cytotoxic and DNA damaging agent which is ubiquitous in the environment and abundant in tobacco smoke. Acr is also an active cytotoxic metabolite of the anti-cancer drugs cyclophosphamide and ifosfamide. The mechanisms via which Acr exerts its anti-cancer activity and cytotoxicity are not clear. In this study, we found that Acr induces cytotoxicity and cell death in human cancer cells with different activities of p53. Acr preferentially binds nucleolar ribosomal DNA (rDNA) to form Acr-deoxyguanosine adducts, and induces oxidative damage to both rDNA and ribosomal RNA (rRNA). Acr triggers ribosomal stress responses, inhibits rRNA synthesis, reduces RNA polymerase I binding to the promoter of rRNA gene, disrupts nucleolar integrity, and impairs ribosome biogenesis and polysome formation. Acr causes an increase in MDM2 levels and phosphorylation of MDM2 in A549 and HeLa cells which are p53 active and p53 inactive, respectively. It enhances the binding of ribosomal protein RPL11 to MDM2 and reduces the binding of p53 and E2F-1 to MDM2 resulting in stabilization/activation of p53 in A549 cells and degradation of E2F-1 in A549 and HeLa cells. We propose that Acr induces ribosomal stress which leads to activation of MDM2 and RPL11-MDM2 binding, consequently, activates p53 and enhances E2F-1 degradation, and that taken together these two processes induce apoptosis and cell death.


International Journal of Molecular Sciences | 2016

Enhancing Anticancer Effect of Gefitinib across the Blood–Brain Barrier Model Using Liposomes Modified with One α-Helical Cell-Penetrating Peptide or Glutathione and Tween 80

Kuan-Hung Lin; Shu-Ting Hong; Hsiang-Tsui Wang; Yu-Li Lo; Anya Maan-Yuh Lin; James Chih-Hsin Yang

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI), such as gefitinib, have been demonstrated to effectively treat the patients of extracranial non-small cell lung cancer (NSCLC). However, these patients often develop brain metastasis (BM) during their disease course. The major obstacle to treat BM is the limited penetration of anticancer drugs across the blood–brain barrier (BBB). In the present study, we utilized gefitinib-loaded liposomes with different modifications to improve gefitinib delivery across the in vitro BBB model of bEnd.3 cells. Gefitinib was encapsulated in small unilamellar liposomes modified with glutathione (GSH) and Tween 80 (SUV-G+T; one ligand plus one surfactant) or RF (SUV-RF; one α-helical cell-penetrating peptide). GSH, Tween 80, and RF were tested by the sulforhodamine B (SRB) assay to find their non-cytotoxic concentrations on bEnd.3 cells. The enhancement on gefitinib across the BBB was evaluated by cytotoxicity assay on human lung adenocarcinoma PC9 cells under the bEnd.3 cells grown on the transwell inserts. Our findings showed that gefitinib incorporated in SUV-G+T or SUV-RF across the bEnd.3 cells significantly reduced the viability of PC9 cells more than that of free gefitinib. Furthermore, SUV-RF showed no cytotoxicity on bEnd.3 cells and did not affect the transendothelial electrical resistance (TEER) and transendothelial permeability of sodium fluorescein across the BBB model. Moreover, flow cytometry and confocal laser scanning microscopy were employed to evaluate the endocytosis pathways of SUV-RF. The results indicated that the uptake into bEnd.3 cells was mainly through adsorptive-mediated mechanism via electrostatic interaction and partially through clathrin-mediated endocytosis. In conclusion, cell penetrating peptide-conjugated SUV-RF shed light on improving drug transport across the BBB via modulating the transcytosis pathway(s).

Collaboration


Dive into the Hsiang-Tsui Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Hu

New York University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge