Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hyun-Wook Lee is active.

Publication


Featured researches published by Hyun-Wook Lee.


American Journal of Physiology-renal Physiology | 2009

Collecting duct-specific Rh C glycoprotein deletion alters basal and acidosis-stimulated renal ammonia excretion

Hyun-Wook Lee; Jill W. Verlander; Jesse M. Bishop; Peter Igarashi; Mary E. Handlogten; I. David Weiner

NH3 movement across plasma membranes has traditionally been ascribed to passive, lipid-phase diffusion. However, ammonia-specific transporters, Mep/Amt proteins, are present in primitive organisms and mammals express orthologs of Mep/Amt proteins, the Rh glycoproteins. These findings suggest that the mechanisms of NH3 movement in mammalian tissues should be reexamined. Rh C glycoprotein (Rhcg) is expressed in the collecting duct, where NH3 secretion is necessary for both basal and acidosis-stimulated ammonia transport. To determine whether the collecting duct secretes NH3 via Rhcg or via lipid-phase diffusion, we generated mice with collecting duct-specific Rhcg deletion (CD-KO). CD-KO mice had loxP sites flanking exons 5 and 9 of the Rhcg gene (Rhcg(fl/fl)) and expressed Cre-recombinase under control of the Ksp-cadherin promoter (Ksp-Cre). Control (C) mice were Rhcg(fl/fl) but Ksp-Cre negative. We confirmed kidney-specific genomic recombination using PCR analysis and collecting duct-specific Rhcg deletion using immunohistochemistry. Under basal conditions, urinary ammonia excretion was less in KO vs. C mice; urine pH was unchanged. After acid-loading for 7 days, CD-KO mice developed more severe metabolic acidosis than did C mice. Urinary ammonia excretion did not increase significantly on the first day of acidosis in CD-KO mice, despite an intact ability to increase urine acidification, whereas it increased significantly in C mice. On subsequent days, urinary ammonia excretion slowly increased in CD-KO mice, but was always significantly less than in C mice. We conclude that collecting duct Rhcg expression contributes to both basal and acidosis-stimulated renal ammonia excretion, indicating that collecting duct ammonia secretion is, at least in part, mediated by Rhcg and not solely by lipid diffusion.


American Journal of Physiology-renal Physiology | 2009

Basolateral expression of the ammonia transporter family member Rh C glycoprotein in the mouse kidney

Hye-Young Kim; Jill W. Verlander; Jesse M. Bishop; Brian D. Cain; Ki Hwan Han; Peter Igarashi; Hyun-Wook Lee; Mary E. Handlogten; I. David Weiner

Ammonia metabolism and transport are critical for acid-base homeostasis. The ammonia transporter family member Rh C glycoprotein (Rhcg) is expressed in distal renal tubular segments, and its expression is regulated in parallel with renal ammonia metabolism. However, there are inconsistencies in its reported subcellular distribution, with both apical and basolateral Rhcg reported in rat and human kidney and only apical expression in mouse kidney. Because the membrane location of Rhcg is critical for understanding its physiological role, we reassessed mouse Rhcg localization using refined immunolocalization methods. Two antibodies directed against different Rhcg-specific epitopes identified both apical and basolateral Rhcg immunolabel in mouse kidney. Immunogold electron microscopy both confirmed basolateral plasma membrane Rhcg expression and showed that apical immunolabel represented expression in both the apical plasma membrane and in subapical cytoplasmic vesicles. Immunoblots and Northern blots identified similar bands in Balb/c and C57BL/6 kidneys, suggesting basolateral Rhcg may result from alternative trafficking. Basolateral Rhcg intensity was strain dependent, with less basolateral Rhcg expression in the Balb/c mouse compared with the C57BL/6 mouse. In mice with collecting duct-specific Rhcg gene deletion, generated using Cre-loxP techniques, neither apical nor basolateral Rhcg immunolabel was identified in the collecting duct, confirming that basolateral Rhcg was the product of the same gene product as apical Rhcg. Although basolateral Rhcg expression differed between C57BL/6 and Balb/c mice, Rh B glycoprotein, which is exclusively basolateral, was expressed at similar levels in the two strains. We conclude that Rhcg is present in both the apical and basolateral plasma membrane in the mouse kidney, where it is likely to contribute to renal ammonia metabolism.


American Journal of Physiology-renal Physiology | 2010

Role of the Rhesus glycoprotein, Rh B glycoprotein, in renal ammonia excretion

Jesse M. Bishop; Jill W. Verlander; Hyun-Wook Lee; Raoul D. Nelson; Arthur J. Weiner; Mary E. Handlogten; I. David Weiner

Rh B glycoprotein (Rhbg) is a member of the Rh glycoprotein family of ammonia transporters. In the current study, we examine Rhbgs role in basal and acidosis-stimulated acid-base homeostasis. Metabolic acidosis induced by HCl administration increased Rhbg expression in both the cortex and outer medulla. To test the functional significance of increased Rhbg expression, we used a Cre-loxP approach to generate mice with intercalated cell-specific Rhbg knockout (IC-Rhbg-KO). On normal diet, intercalated cell-specific Rhbg deletion did not alter urine ammonia excretion, pH, or titratable acid excretion significantly, but it did decrease glutamine synthetase expression in the outer medulla significantly. After metabolic acidosis was induced, urinary ammonia excretion was significantly less in IC-Rhbg-KO than in control (C) mice on days 2-4 of acid loading, but not on day 5. Urine pH and titratable acid excretion and dietary acid intake did not differ significantly between acid-loaded IC-Rhcg-KO and C mice. In IC-Rhbg-KO mice, acid loading increased connecting segment (CNT) cell and outer medullary collecting duct principal cell Rhbg expression. In both C and IC-Rhbg-KO mice, acid loading decreased glutamine synthetase in both the cortex and outer medulla; the decrease on day 3 was similar in IC-Rhbg-KO and C mice, but on day 5 it was significantly greater in IC-Rhbg-KO than in C mice. We conclude 1) intercalated cell Rhbg contributes to acidosis-stimulated renal ammonia excretion, 2) Rhbg in CNT and principal cells may contribute to renal ammonia excretion, and 3) decreased glutamine synthetase expression may enable normal rates of ammonia excretion under both basal conditions and on day 5 of acid loading in IC-Rhbg-KO mice.


American Journal of Physiology-renal Physiology | 2010

Effect of intercalated cell-specific Rh C glycoprotein deletion on basal and metabolic acidosis-stimulated renal ammonia excretion

Hyun-Wook Lee; Jill W. Verlander; Jesse M. Bishop; Raoul D. Nelson; Mary E. Handlogten; I. David Weiner

Rh C glycoprotein (Rhcg) is an NH(3)-specific transporter expressed in both intercalated cells (IC) and principal cells (PC) in the renal collecting duct. Recent studies show that deletion of Rhcg from both intercalated and principal cells inhibits both basal and acidosis-stimulated renal ammonia excretion. The purpose of the current studies was to better understand the specific role of Rhcg expression in intercalated cells in basal and metabolic acidosis-stimulated renal ammonia excretion. We generated mice with intercalated cell-specific Rhcg deletion (IC-Rhcg-KO) using Cre-loxP techniques; control (C) mice were floxed Rhcg but Cre negative. Under basal conditions, IC-Rhcg-KO and C mice excreted urine with similar ammonia content and pH. Mice were then acid loaded by adding HCl to their diet. Ammonia excretion after acid loading increased similarly in IC-Rhcg-KO and C mice during the first 2 days of acid loading but on day 3 was significantly less in IC-Rhcg-KO than in C mice. During the first 2 days of acid loading, urine was significantly more acidic in IC-Rhcg-KO mice than in C mice; there was no difference on day 3. In IC-Rhcg-KO mice, acid loading increased principal cell Rhcg expression in both the cortex and outer medulla as well as expression of another ammonia transporter, Rh glycoprotein B (Rhbg), in principal cells in the outer medulla. We conclude that 1) Rhcg expression in intercalated cells is necessary for the normal renal response to metabolic acidosis; 2) principal cell Rhcg contributes to both basal and acidosis-stimulated ammonia excretion; and 3) adaptations in Rhbg expression occur in response to acid-loading.


American Journal of Physiology-renal Physiology | 2014

Effect of collecting duct-specific deletion of both Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg) on renal response to metabolic acidosis.

Hyun-Wook Lee; Jill W. Verlander; Mary E. Handlogten; Ki-Hwan Han; I. David Weiner

The Rhesus (Rh) glycoproteins, Rh B and Rh C Glycoprotein (Rhbg and Rhcg, respectively), are ammonia-specific transporters expressed in renal distal nephron and collecting duct sites that are necessary for normal rates of ammonia excretion. The purpose of the current studies was to determine the effect of their combined deletion from the renal collecting duct (CD-Rhbg/Rhcg-KO) on basal and acidosis-stimulated acid-base homeostasis. Under basal conditions, urine pH and ammonia excretion and serum HCO3(-) were similar in control (C) and CD-Rhbg/Rhcg-KO mice. After acid-loading for 7 days, CD-Rhbg/Rhcg-KO mice developed significantly more severe metabolic acidosis than did C mice. Acid loading increased ammonia excretion, but ammonia excretion increased more slowly in CD-Rhbg/Rhcg-KO and it was significantly less than in C mice on days 1-5. Urine pH was significantly more acidic in CD-Rhbg/Rhcg-KO mice on days 1, 3, and 5 of acid loading. Metabolic acidosis increased phosphenolpyruvate carboxykinase (PEPCK) and Na(+)/H(+) exchanger NHE-3 and decreased glutamine synthetase (GS) expression in both genotypes, and these changes were significantly greater in CD-Rhbg/Rhcg-KO than in C mice. We conclude that 1) Rhbg and Rhcg are critically important in the renal response to metabolic acidosis; 2) the significantly greater changes in PEPCK, NHE-3, and GS expression in acid-loaded CD-Rhbg/Rhcg-KO compared with acid-loaded C mice cause the role of Rhbg and Rhcg to be underestimated quantitatively; and 3) in mice with intact Rhbg and Rhcg expression, metabolic acidosis does not induce maximal changes in PEPCK, NHE-3, and GS expression despite the presence of persistent metabolic acidosis.


American Journal of Physiology-renal Physiology | 2011

Effect of hypokalemia on renal expression of the ammonia transporter family members, Rh B Glycoprotein and Rh C Glycoprotein, in the rat kidney

Ki-Hwan Han; Hyun-Wook Lee; Mary E. Handlogten; Jesse M. Bishop; Moshe Levi; Jin Kim; Jill W. Verlander; I. David Weiner

Hypokalemia is a common electrolyte disorder that increases renal ammonia metabolism and can cause the development of an acid-base disorder, metabolic alkalosis. The ammonia transporter family members, Rh B glycoprotein (Rhbg) and Rh C glycoprotein (Rhcg), are expressed in the distal nephron and collecting duct and mediate critical roles in acid-base homeostasis by facilitating ammonia secretion. In the current studies, the effect of hypokalemia on renal Rhbg and Rhcg expression was examined. Normal Sprague-Dawley rats received either K(+)-free or control diets for 2 wk. Rats receiving the K(+)-deficient diet developed hypokalemia and metabolic alkalosis associated with significant increases in both urinary ammonia excretion and urine pH. Rhcg expression increased in the outer medullary collecting duct (OMCD). In OMCD intercalated cells, hypokalemia resulted in more discrete apical Rhcg expression and a marked increase in apical plasma membrane immunolabel. In principal cells, in the OMCD, hypokalemia increased both apical and basolateral Rhcg immunolabel intensity. Cortical Rhcg expression was not detectably altered by immunohistochemistry, although there was a slight decrease in total expression by immunoblot analysis. Rhbg protein expression was decreased slightly in the cortex and not detectably altered in the outer medulla. We conclude that in rat OMCD, hypokalemia increases Rhcg expression, causes more polarized apical expression in intercalated cells, and increases both apical and basolateral expression in the principal cell. Increased plasma membrane Rhcg expression in response to hypokalemia in the rat, particularly in the OMCD, likely contributes to the increased ammonia excretion and thereby to the development of metabolic alkalosis.


American Journal of Physiology-renal Physiology | 2013

Intercalated cell-specific Rh B glycoprotein deletion diminishes renal ammonia excretion response to hypokalemia

Jesse M. Bishop; Hyun-Wook Lee; Mary E. Handlogten; Ki-Hwan Han; Jill W. Verlander; I. David Weiner

The ammonia transporter family member, Rh B Glycoprotein (Rhbg), is an ammonia-specific transporter heavily expressed in the kidney and is necessary for the normal increase in ammonia excretion in response to metabolic acidosis. Hypokalemia is a common clinical condition in which there is increased renal ammonia excretion despite the absence of metabolic acidosis. The purpose of this study was to examine Rhbgs role in this response through the use of mice with intercalated cell-specific Rhbg deletion (IC-Rhbg-KO). Hypokalemia induced by feeding a K(+)-free diet increased urinary ammonia excretion significantly. In mice with intact Rhbg expression, hypokalemia increased Rhbg protein expression in intercalated cells in the cortical collecting duct (CCD) and in the outer medullary collecting duct (OMCD). Deletion of Rhbg from intercalated cells inhibited hypokalemia-induced changes in urinary total ammonia excretion significantly and completely prevented hypokalemia-induced increases in urinary ammonia concentration, but did not alter urinary pH. We conclude that hypokalemia increases Rhbg expression in intercalated cells in the cortex and outer medulla and that intercalated cell Rhbg expression is necessary for the normal increase in renal ammonia excretion in response to hypokalemia.


American Journal of Physiology-renal Physiology | 2013

Expression of glutamine synthetase in the mouse kidney: localization in multiple epithelial cell types and differential regulation by hypokalemia.

Jill W. Verlander; Diana Chu; Hyun-Wook Lee; Mary E. Handlogten; I. David Weiner

Renal glutamine synthetase catalyzes the reaction of NH4+ with glutamate, forming glutamine and decreasing the ammonia available for net acid excretion. The purpose of the present study was to determine glutamine synthetases specific cellular expression in the mouse kidney and its regulation by hypokalemia, a common cause of altered renal ammonia metabolism. Glutamine synthetase mRNA and protein were present in the renal cortex and in both the outer and inner stripes of the outer medulla. Immunohistochemistry showed glutamine synthetase expression throughout the entire proximal tubule and in nonproximal tubule cells. Double immunolabel with cell-specific markers demonstrated glutamine synthetase expression in type A intercalated cells, non-A, non-B intercalated cells, and distal convoluted tubule cells, but not in principal cells, type B intercalated cells, or connecting segment cells. Hypokalemia induced by feeding a nominally K+ -free diet for 12 days decreased glutamine synthetase expression throughout the entire proximal tubule and in the distal convoluted tubule and simultaneously increased glutamine synthetase expression in type A intercalated cells in both the cortical and outer medullary collecting duct. We conclude that glutamine synthetase is widely and specifically expressed in renal epithelial cells and that the regulation of expression differs in specific cell populations. Glutamine synthetase is likely to mediate an important role in renal ammonia metabolism.


American Journal of Physiology-renal Physiology | 2013

Expression of the ammonia transporter family member, Rh B Glycoprotein, in the human kidney

Ki-Hwan Han; Hyun-Wook Lee; Mary E. Handlogten; Florence Whitehill; Gunars Osis; Byron P. Croker; William L. Clapp; Jill W. Verlander; I. David Weiner

The ammonia transporter family member, Rh B Glycoprotein (RhBG/Rhbg), is essential for ammonia transport by the rodent kidney, but in the human kidney mRNA but not protein expression has been reported. Because ammonia transport is fundamental for acid-base homeostasis, the current study addressed RhBG expression in the human kidney. Two distinct RhBG mRNA sequences have been reported, with different numbers of consecutive cytosines at nt1265 and thus encoding different carboxy-tails. Sequencing the region of difference in both human kidney and liver mRNA showed eight sequential cytosines, not seven as in some reports. Knowing the correct mRNA sequence for RhBG, we then assessed RhBG protein expression using antibodies against the correct amino acid sequence. Immunoblot analysis demonstrated RhBG protein expression in human kidney and immunohistochemistry identified basolateral RhBG in connecting segment (CNT) and the cortical and outer medullary collecting ducts. Colocalization of RhBG with multiple cell-specific markers demonstrated that that CNT cells and collecting duct type A intercalated cells express high levels of RhBG, and type B intercalated cells and principal cells do not express detectable RhBG. Thus, these studies identify the correct mRNA and thus protein sequence for human RhBG and show that the human kidney expresses basolateral RhBG protein in CNT, type A intercalated cells, and non-A, non-B cells. We conclude that RhBG can mediate an important role in human renal ammonia transport.


American Journal of Physiology-renal Physiology | 2013

Renal ammonia excretion in response to hypokalemia: effect of collecting duct-specific Rh C glycoprotein deletion

Hyun-Wook Lee; Jill W. Verlander; Jesse M. Bishop; Mary E. Handlogten; Ki-Hwan Han; I. David Weiner

The Rhesus factor protein, Rh C glycoprotein (Rhcg), is an ammonia transporter whose expression in the collecting duct is necessary for normal ammonia excretion both in basal conditions and in response to metabolic acidosis. Hypokalemia is a common clinical condition associated with increased renal ammonia excretion. In contrast to basal conditions and metabolic acidosis, increased ammonia excretion during hypokalemia can lead to an acid-base disorder, metabolic alkalosis, rather than maintenance of acid-base homeostasis. The purpose of the current studies was to determine Rhcgs role in hypokalemia-stimulated renal ammonia excretion through the use of mice with collecting duct-specific Rhcg deletion (CD-Rhcg-KO). In mice with intact Rhcg expression, a K(+)-free diet increased urinary ammonia excretion and urine alkalinization and concurrently increased Rhcg expression in the collecting duct in the outer medulla. Immunohistochemistry and immunogold electron microscopy showed hypokalemia increased both apical and basolateral Rhcg expression. In CD-Rhcg-KO, a K(+)-free diet increased urinary ammonia excretion and caused urine alkalinization, and the magnitude of these changes did not differ from mice with intact Rhcg expression. In mice on a K(+)-free diet, CD-Rhcg-KO increased phosphate-dependent glutaminase (PDG) expression in the outer medulla. We conclude that hypokalemia increases collecting duct Rhcg expression, that this likely contributes to the hypokalemia-stimulated increase in urinary ammonia excretion, and that adaptive increases in PDG expression can compensate for the absence of collecting duct Rhcg.

Collaboration


Dive into the Hyun-Wook Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ki-Hwan Han

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jin Kim

Catholic University of Korea

View shared research outputs
Researchain Logo
Decentralizing Knowledge