Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hsiao-Jou Cortina Chen is active.

Publication


Featured researches published by Hsiao-Jou Cortina Chen.


Frontiers in Neuroscience | 2015

Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress

Jereme G. Spiers; Hsiao-Jou Cortina Chen; Conrad Sernia; Nickolas A. Lavidis

Glucocorticoids released from the adrenal gland in response to stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis induce activity in the cellular reduction-oxidation (redox) system. The redox system is a ubiquitous chemical mechanism allowing the transfer of electrons between donor/acceptors and target molecules during oxidative phosphorylation while simultaneously maintaining the overall cellular environment in a reduced state. The objective of this review is to present an overview of the current literature discussing the link between HPA axis-derived glucocorticoids and increased oxidative stress, particularly focussing on the redox changes observed in the hippocampus following glucocorticoid exposure.


Frontiers in Neuroscience | 2015

Response of the nitrergic system to activation of the neuroendocrine stress axis

Hsiao-Jou Cortina Chen; Jereme G. Spiers; Conrad Sernia; Nickolas A. Lavidis

Exposure to stressful stimuli causes activation of the hypothalamic-pituitary-adrenal axis which rapidly releases high concentrations of glucocorticoid stress hormones, resulting in increased cellular metabolism and spontaneous oxygen and nitrogen radical formation. High concentrations of nitrogen radicals, including nitric oxide, cause damage to cellular proteins in addition to inhibiting components of the mitochondrial transport chain, leading to cellular energy deficiency. During stress exposure, pharmacological inhibition of nitric oxide production reduces indicators of anxiety- and depressive-like behavior in animal models. Therefore, the purpose of this review is to present an overview of the current literature on stress-evoked changes in the nitrergic system, particularly within neural tissue.


Free Radical Biology and Medicine | 2016

Acute restraint stress induces specific changes in nitric oxide production and inflammatory markers in the rat hippocampus and striatum.

Hsiao-Jou Cortina Chen; Jereme G. Spiers; Conrad Sernia; Nickolas A. Lavidis

Chronic mild stress has been shown to cause hippocampal neuronal nitric oxide synthase (NOS) overexpression and the resultant nitric oxide (NO) production has been implicated in the etiology of depression. However, the extent of nitrosative changes including NOS enzymatic activity and the overall output of NO production in regions of the brain like the hippocampus and striatum following acute stress has not been characterized. In this study, outbred male Wistar rats aged 6-7 weeks were randomly allocated into 0 (control), 60, 120, or 240 min stress groups and neural regions were cryodissected for measurement of constitutive and inducible NOS enzymatic activity, nitrosative status, and relative gene expression of neuronal and inducible NOS. Hippocampal constitutive NOS activity increased initially but was superseded by the inducible isoform as stress duration was prolonged. Interestingly, hippocampal neuronal NOS and interleukin-1β mRNA expression was downregulated, while the inducible NOS isoform was upregulated in conjunction with other inflammatory markers. This pro-inflammatory phenotype within the hippocampus was further confirmed with an increase in the glucocorticoid-antagonizing macrophage migration inhibitory factor, Mif, and the glial surveillance marker, Ciita. This indicates that despite high levels of glucocorticoids, acute stress sensitizes a neuroinflammatory response within the hippocampus involving both pro-inflammatory cytokines and inducible NOS while concurrently modulating the immunophenotype of glia. Furthermore, there was a delayed increase in striatal inducible NOS expression while no change was found in other pro-inflammatory mediators. This suggests that short term stress induces a generalized increase in inducible NOS signaling that coincides with regionally specific increased markers of adaptive immunity and inflammation within the brain.


Psychoneuroendocrinology | 2016

Acute restraint stress induces rapid changes in central redox status and protective antioxidant genes in rats

Jereme G. Spiers; Hsiao-Jou Cortina Chen; James S. M. Cuffe; Corrado Sernia; Nickolas A. Lavidis

The stress-induced imbalance in reduction/oxidation (redox) state has been proposed to play a major role in the etiology of neurological disorders. However, the relationship between psychological stress, central redox state, and potential protective mechanisms within specific neural regions has not been well characterized. In this study, we have used an acute psychological stress to demonstrate the dynamic changes that occur in the redox system of hippocampal and striatal tissue. Outbred male Wistar rats were subject to 0 (control), 60, 120, or 240min of acute restraint stress and the hippocampus and striatum were cryodissected for redox assays and relative gene expression. Restraint stress significantly elevated oxidative status and lipid peroxidation, while decreasing glutathione ratios overall indicative of oxidative stress in both neural regions. These biochemical changes were prevented by prior administration of the glucocorticoid receptor antagonist, RU-486. The hippocampus also demonstrated increased glutathione peroxidase 1 and 4 antioxidant expression which was not observed in the striatum, while both regions displayed robust upregulation of the antioxidant, metallothionein 1a. This was observed with concurrent upregulation of 11β-hydroxysteroid dehydrogenase 1, a local reactivator of corticosterone, in addition to decreased expression of the cytosolic regulatory subunit of superoxide-producing enzyme, NADPH-oxidase. Together, this study demonstrates distinctive regional redox profiles following acute stress exposure, in addition to identifying differential capabilities in managing oxidative challenges via altered antioxidant gene expression in the hippocampus and striatum.


Stress | 2014

Reactive nitrogen species contribute to the rapid onset of redox changes induced by acute immobilization stress in rats

Hsiao-Jou Cortina Chen; Jereme G. Spiers; Conrad Sernia; S. T. Anderson; Nickolas A. Lavidis

Abstract Acute stress leads to the rapid secretion of glucocorticoids, which accelerates cellular metabolism, resulting in increased reactive oxygen and nitrogen species generation. Although the nitrergic system has been implicated in numerous stress-related diseases, the time course and extent of nitrosative changes during acute stress have not been characterized. Outbred male Wistar rats were randomly allocated into control (n = 9) or 120 min acute immobilization stress (n = 9) groups. Serial blood samples were collected at 0 (baseline), 60, 90, and 120 min. Plasma corticosterone concentrations increased by approximately 350% at 60, 90, and 120 (p < 0.001) min of stress. The production of nitric oxide, measured as the benzotriazole form of 4-amino-5-methylamino-2′,7′-difluorofluorescein, increased during stress exposure by approximately 5%, 10%, and 15% at 60 (p < 0.05), 90 (p < 0.01) and 120 (p < 0.001) min, respectively, compared to controls. Nitric oxide metabolism, measured as the stable metabolites nitrite and nitrate, showed a 40–60% increase at 60, 90, and 120 (p < 0.001) min of stress. The oxidative status of 2′,7′-dichlorofluorescein in plasma was significantly elevated at 60 (p < 0.01), 90, and 120 (p < 0.001) min. A delayed decrease of approximately 25% in the glutathione redox ratio at 120 min (p < 0.001) also indicates stress-induced cellular oxidative stress. The peroxidation of plasma lipids increased by approximately 10% at 90 (p < 0.05) and 15% at 120 (p < 0.001) min, indicative of oxidative damage. It was concluded that a single episode of stress causes early and marked changes of both oxidative and nitrosative status sufficient to induce oxidative damage in peripheral tissues.


Chemical Senses | 2014

A Combination of Plant-Derived Odors Reduces Corticosterone and Oxidative Indicators of Stress

Jereme G. Spiers; Hsiao-Jou Cortina Chen; Conrad Sernia; Nickolas A. Lavidis

In this study, we measured typical stress markers in addition to oxidative status and reduced glutathione in erythrocytes, and plasma lipid peroxidation of restraint-stressed animals exposed to a combination of plant-derived odors (0.03% Z-3-hexen-1-ol, 0.03% E-2-hexenal, and 0.015% α-pinene in triethyl citrate). Male Wistar rats aged 6-7 weeks postnatal were exposed to vehicle (triethyl citrate, n = 12), plant-derived odors (n = 12), or 1% propionic acid odor (n = 12) under control or stress conditions, and blood samples were collected. Restraint stress increased plasma glucose and plasma corticosterone concentrations by approximately 10% (P < 0.01) and 125% (P < 0.001), respectively, in vehicle-exposed animals. Similar increases were observed in animals exposed to a 1% propionic acid odor, indicating the novelty of odor exposure does not alter stress responsiveness. There was also an increase of approximately 15% in both erythrocytic oxidative status (P < 0.001) and plasma lipid peroxidation (P < 0.05), and a decrease of approximately the same magnitude in reduced glutathione (P < 0.05) in restrained animals with vehicle exposure. There were no differences observed between control and stress treatment with plant-derived odor exposure in any of the measured parameters. It was concluded that exposure to plant-derived odors reduce corticosterone, glucose, and redox responses elicited by psychological stress.


Phytochemistry Reviews | 2015

Stress alleviating plant-derived ‘green odors’: behavioral, neurochemical and neuroendocrine perspectives in laboratory animals

Jereme G. Spiers; Hsiao-Jou Cortina Chen; Nickolas A. Lavidis

Exposure to physical or psychological stimuli perceived to be threatening activates the hypothalamic–pituitary–adrenal (HPA) axis and the sympathetic nervous system (SNS) resulting in a classical stress response. Prolonged activation of the HPA and SNS is associated with many adverse physiological changes, most notable the development of anxiety and depression. Recently, a number of plant-derived aliphatic alcohols and aldehydes, termed ‘green odors,’ have demonstrated stress-alleviating properties. This novel method of stress-alleviation has been shown using a number of different animal and stress models utilizing numerous experimental techniques. The object of this review is to present a balanced and critical overview of the present literature on the mammalian effects of exposure to these odors. These findings will be discussed in terms of ongoing trends in the field and possible experimental outcomes will be suggested.


The International Journal of Neuropsychopharmacology | 2018

Inhibition of fatty acid amide hydrolase by PF-3845 alleviates the nitrergic and proinflammatory response in rat hippocampus following acute stress

Hsiao-Jou Cortina Chen; Jereme G. Spiers; Conrad Sernia; Nickolas A. Lavidis

Abstract Background Long-term exposure to stress has been demonstrated to cause neuroinflammation through a sustained overproduction of free radicals, including nitric oxide, via an increased inducible nitric oxide synthase activity. We previously demonstrated that inducible nitric oxide synthase activity and mRNA are significantly upregulated in the rat hippocampus following just 4 hours of restraint stress. Similar to nitric oxide, endocannabinoids are synthesized on demand, with preclinical observations suggesting that cannabinoid receptor agonists and endocannabinoid enhancers inhibit nitrergic activity. Specifically, previous work has shown that enhancement of endocannabinoids via inhibition of fatty acid amide hydrolase with PF-3845 reduced inducible nitric oxide synthase-expressing microglia following traumatic brain injury. However, this describes cannabinoid modulation following physical injury, and therefore the present study aimed to examine the effects of PF-3845 in the modulation of nitrergic and inflammatory-related genes within the hippocampus after acute stress exposure. Methods Following vehicle or PF-3845 injections (5 mg/kg; i.p.), male Wistar rats were exposed to 0 (control), 60, 240, or 360 minutes of restraint stress after which plasma and dorsal hippocampus were isolated for further biochemical and gene expression analysis. Results The results demonstrate that pretreatment with PF-3845 rapidly ameliorates plasma corticosterone release at 60 minutes of stress. An increase in endocannabinoid signalling also induces an overall attenuation in inducible nitric oxide synthase, tumor necrosis factor-alpha convertase, interleukin-6, cyclooxygenase-2, peroxisome proliferator-activated receptor gamma mRNA, and the transactivation potential of nuclear factor kappa-light-chain-enhancer of activated B cells in the hippocampus. Conclusions These results suggest that enhanced endocannabinoid levels in the dorsal hippocampus have an overall antinitrosative and antiinflammatory effect following acute stress exposure.


Stress | 2017

Non-invasive assessment of altered activity following restraint in mice using an automated physiological monitoring system

Jereme G. Spiers; Hsiao-Jou Cortina Chen; Frederik J. Steyn; Nickolas A. Lavidis; Trent M. Woodruff; John D. Lee

Abstract In the laboratory setting, typical endocrine and targeted behavioral tests are limited in their ability to provide a direct assessment of stress in animals housed in undisturbed conditions. We hypothesized that an automated phenotyping system would allow the detection of subtle stress-related behavioral changes well beyond the time-frames examined using conventional methods. In this study, we have utilized the TSE PhenoMaster system to continuously record basal behaviors and physiological parameters including activity, body weight, food intake and oxygen consumption in undisturbed and stressed C57Bl/6J male mice (n = 12/group), with a pharmacological intervention using the conventional anxiolytic, diazepam (5 mg kg−1 i.p.; n = 8/group). We observed significant 20–30% reductions in locomotor activity in the dark phase, with subtle reductions in light phase activity for up to 96 h following a single 2 h episode of restraint stress. A single administration of diazepam reduced plasma corticosterone concentrations by 30–35% during stress exposure when compared to mice treated with vehicle. This treatment did not result in significantly different locomotor activity compared to vehicle within the first 48 h following restraint stress. However, diazepam treatment facilitated restoration of locomotor activity at 72 and 96 h after restraint stress exposure in comparison to vehicle-treated mice. Hence, the use of an automated phenotyping system allows a real time assessment of basal behaviors and empirical metabolism following exposure to restraint stress and demonstrates major and subtle changes in activity persist for several days after stress exposure.


Journal of basic and clinical physiology and pharmacology | 2016

Oral administration of green plant-derived chemicals and antioxidants alleviates stress-induced cellular oxidative challenge

Elizabeth A. Beaven; Kay Colthorpe; Jereme G. Spiers; Hsiao-Jou Cortina Chen; Nickolas A. Lavidis; Julie Albrecht

Abstract Background: This study examined the efficacy of the combination antioxidant, Formula 42 (F42), on cellular stress indicators in animal and human models of stress-induced oxidative stress. Methods: A sub-chronic psychological stress model in rodents was used to induce stress and oxidative stress indicators over a 10-day period during which animals received oral doses of F42 or water. Following treatment, body weight, plasma stress hormone corticosterone, and oxidative capacity were evaluated. In healthy human subjects, a randomized double-blind crossover study was used to examine the antioxidant effect of F42 or placebo in an exercise-induced oxidative stress model. Erythrocyte and plasma oxidative status was evaluated using the fluorescent activation of 2′,7′-dichlorofluorescin (DCF) as an indicator. Results: Oral administration of F42 reduced the corticosterone response to acute stress compared to vehicle but did not differ at the conclusion of the 10-day study. However, F42 administration did reduce stress-induced growth restriction and alleviate DCF activation in circulating erythrocytes by approximately 10% following 10 days of stress exposure. Oral administration of F42 also significantly reduced DCF activation by approximately 10% in healthy human subjects undergoing exercise-induced oxidative stress. Conclusions: Oral administration of F42 in rodents produces transient reductions in stress hormones and reduces stress indicators following sub-chronic psychological stress exposure. In humans, F42 acts as an early and potent antioxidant capable of scavenging free radicals within 30 min of ingestion.

Collaboration


Dive into the Hsiao-Jou Cortina Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Conrad Sernia

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kay Colthorpe

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Corrado Sernia

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John D. Lee

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Johnny K. Lee

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge