Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hsien-Sung Huang is active.

Publication


Featured researches published by Hsien-Sung Huang.


Brain Research Reviews | 2006

Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders.

Schahram Akbarian; Hsien-Sung Huang

The 67 and 65 kDa isoforms of glutamic acid decarboxylase, the key enzymes for GABA biosynthesis, are expressed at altered levels in postmortem brain of subjects diagnosed with schizophrenia and related disorders, including autism and bipolar illness. The predominant finding is a decrease in GAD67 mRNA levels, affecting multiple brain regions, including prefrontal and temporal cortex. Postmortem studies, in conjunction with animal models, identified several mechanisms that contribute to the dysregulation of GAD67 in cerebral cortex. These include disordered connectivity formation during development, abnormal expression of Reelin and neural cell adhesion molecule (NCAM) glycoproteins, defects in neurotrophin signaling and alterations in dopaminergic and glutamatergic neurotransmission. These mechanisms are likely to operate in conjunction with genetic risk factors for psychosis, including sequence polymorphisms residing in the promoter of GAD1 (2q31), the gene encoding GAD67. We propose an integrative model, with multiple molecular and cellular mechanisms contributing to transcriptional dysregulation of GAD67 and cortical dysfunction in psychosis.


The Journal of Neuroscience | 2007

Prefrontal Dysfunction in Schizophrenia Involves Mixed-Lineage Leukemia 1-Regulated Histone Methylation at GABAergic Gene Promoters

Hsien-Sung Huang; Anouch Matevossian; Catheryne Whittle; Se Young Kim; Armin Schumacher; Stephen P. Baker; Schahram Akbarian

Alterations in GABAergic mRNA expression play a key role for prefrontal dysfunction in schizophrenia and other neurodevelopmental disease. Here, we show that histone H3-lysine 4 methylation, a chromatin mark associated with the transcriptional process, progressively increased at GAD1 and other GABAergic gene promoters (GAD2, NPY, SST) in human prefrontal cortex (PFC) from prenatal to peripubertal ages and throughout adulthood. Alterations in schizophrenia included decreased GAD1 expression and H3K4-trimethylation, predominantly in females and in conjunction with a risk haplotype at the 5′ end of GAD1. Heterozygosity for a truncated, lacZ knock-in allele of mixed-lineage leukemia 1 (Mll1), a histone methyltransferase expressed in GABAergic and other cortical neurons, resulted in decreased H3K4 methylation at GABAergic gene promoters. In contrast, Gad1 H3K4 (tri)methylation and Mll1 occupancy was increased in cerebral cortex of mice after treatment with the atypical antipsychotic, clozapine. These effects were not mimicked by haloperidol or genetic ablation of dopamine D2 and D3 receptors, suggesting that blockade of D2-like signaling is not sufficient for clozapine-induced histone methylation. Therefore, chromatin remodeling mechanisms at GABAergic gene promoters, including MLL1-mediated histone methylation, operate throughout an extended period of normal human PFC development and play a role in the neurobiology of schizophrenia.


Nature | 2012

Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons

Hsien-Sung Huang; John A. Allen; Angela M. Mabb; Ian F. King; Jayalakshmi Miriyala; Bonnie Taylor-Blake; Noah Sciaky; J. Walter Dutton; Hyeong Min Lee; Xin Chen; Jian Jin; Arlene S. Bridges; Mark J. Zylka; Bryan L. Roth; Benjamin D. Philpot

Angelman syndrome is a severe neurodevelopmental disorder caused by deletion or mutation of the maternal allele of the ubiquitin protein ligase E3A (UBE3A). In neurons, the paternal allele of UBE3A is intact but epigenetically silenced, raising the possibility that Angelman syndrome could be treated by activating this silenced allele to restore functional UBE3A protein. Using an unbiased, high-content screen in primary cortical neurons from mice, we identify twelve topoisomerase I inhibitors and four topoisomerase II inhibitors that unsilence the paternal Ube3a allele. These drugs included topotecan, irinotecan, etoposide and dexrazoxane (ICRF-187). At nanomolar concentrations, topotecan upregulated catalytically active UBE3A in neurons from maternal Ube3a-null mice. Topotecan concomitantly downregulated expression of the Ube3a antisense transcript that overlaps the paternal copy of Ube3a. These results indicate that topotecan unsilences Ube3a in cis by reducing transcription of an imprinted antisense RNA. When administered in vivo, topotecan unsilenced the paternal Ube3a allele in several regions of the nervous system, including neurons in the hippocampus, neocortex, striatum, cerebellum and spinal cord. Paternal expression of Ube3a remained elevated in a subset of spinal cord neurons for at least 12 weeks after cessation of topotecan treatment, indicating that transient topoisomerase inhibition can have enduring effects on gene expression. Although potential off-target effects remain to be investigated, our findings suggest a therapeutic strategy for reactivating the functional but dormant allele of Ube3a in patients with Angelman syndrome.


Biological Psychiatry | 2009

Molecular Determinants of Dysregulated GABAergic Gene Expression in the Prefrontal Cortex of Subjects with Schizophrenia

Nikolaos Mellios; Hsien-Sung Huang; Stephen P. Baker; Marzena Galdzicka; Edward I. Ginns; Schahram Akbarian

BACKGROUND Prefrontal deficits in gamma-aminobutyric acid (GABA)ergic gene expression, including neuropeptide Y (NPY), somatostatin (SST), and parvalbumin (PV) messenger RNAs (mRNAs), have been reported for multiple schizophrenia cohorts. Preclinical models suggest that a subset of these GABAergic markers (NPY/SST) is regulated by brain-derived neurotrophic factor (BDNF), which in turn is under the inhibitory influence of small noncoding RNAs. However, it remains unclear if these mechanisms are important determinants for dysregulated NPY and SST expression in prefrontal cortex (PFC) of subjects with schizophrenia. METHODS Using a postmortem case-control design, the association between BDNF protein, NPY/SST/PV mRNAs, and two BDNF-regulating microRNAs (miR-195 and miR-30a-5p) was determined in samples from the PFC of 20 schizophrenia and 20 control subjects. Complementary studies were conducted in cerebral cortex of mice subjected to antipsychotic treatment or a brain-specific ablation of the Bdnf gene. RESULTS Subjects with schizophrenia showed deficits in NPY and PV mRNAs. Within-pair differences in BDNF protein levels showed strong positive correlations with NPY and SST and a robust inverse association with miR-195 levels, which in turn were not affected by antipsychotic treatment or genetic ablation of Bdnf. CONCLUSIONS Taken together, these results suggest that prefrontal deficits in a subset of GABAergic mRNAs, including NPY, are dependent on the regional supply of BDNF, which in turn is fine-tuned through a microRNA (miRNA)-mediated mechanism.


Biological Psychiatry | 2009

Epigenetic regulation in human brain-focus on histone lysine methylation

Schahram Akbarian; Hsien-Sung Huang

Alterations in RNA levels are frequently reported in brain of subjects diagnosed with autism, schizophrenia, depression, and other psychiatric diseases, but it remains unclear whether the underlying molecular pathology involves changes in gene expression, as opposed to alterations in messenger RNA processing. Pre-clinical studies have revealed that stress, drugs, and a variety of other environmental factors lead to changes in RNA levels in brain via epigenetic mechanisms, including modification of histone proteins. A number of site-specific modifications of the nucleosome core histones-including the trimethylated forms of histone H3 lysines K4, K9, and K27-are of particular interest for postmortem research, because these marks differentiate between active and inactive chromatin and seem to remain relatively stable during tissue autolysis. Therefore, histone methylation profiling at promoter regions could provide important clues about mechanisms of gene expression in human brain during development and in disease. Intriguingly, mutations within the genes encoding the H3K9-specific methyltransferase, EHMT1, and the H3K4-specific histone demethylase, JARID1C/SMCX, have been linked to mental retardation and autism, respectively. In addition, the H3K4-specific methyltransferase, MLL1, is essential for hippocampal synaptic plasticity and might be involved in cortical dysfunction of some cases of schizophrenia. Together, these findings emphasize the potential significance of histone lysine methylation for orderly brain development and also as a molecular toolbox to study chromatin function in postmortem tissue.


Nature | 2013

Topoisomerases facilitate transcription of long genes linked to autism

Ian F. King; Chandri N. Yandava; Angela M. Mabb; Jack S. Hsiao; Hsien-Sung Huang; Brandon L. Pearson; J. Mauro Calabrese; Joshua Starmer; Joel S. Parker; Terry Magnuson; Stormy J. Chamberlain; Benjamin D. Philpot; Mark J. Zylka

Topoisomerases are expressed throughout the developing and adult brain and are mutated in some individuals with autism spectrum disorder (ASD). However, how topoisomerases are mechanistically connected to ASD is unknown. Here we find that topotecan, a topoisomerase 1 (TOP1) inhibitor, dose-dependently reduces the expression of extremely long genes in mouse and human neurons, including nearly all genes that are longer than 200 kilobases. Expression of long genes is also reduced after knockdown of Top1 or Top2b in neurons, highlighting that both enzymes are required for full expression of long genes. By mapping RNA polymerase II density genome-wide in neurons, we found that this length-dependent effect on gene expression was due to impaired transcription elongation. Interestingly, many high-confidence ASD candidate genes are exceptionally long and were reduced in expression after TOP1 inhibition. Our findings suggest that chemicals and genetic mutations that impair topoisomerases could commonly contribute to ASD and other neurodevelopmental disorders.


BMC Neuroscience | 2008

Isolation of neuronal chromatin from brain tissue

Yan Jiang; Anouch Matevossian; Hsien-Sung Huang; Juerg R. Straubhaar; Schahram Akbarian

BackgroundDNA-protein interactions in mature brain are increasingly recognized as key regulators for behavioral plasticity and neuronal dysfunction in chronic neuropsychiatric disease. However, chromatin assays typically lack single cell resolution, and therefore little is known about chromatin regulation of differentiated neuronal nuclei that reside in brain parenchyma intermingled with various types of non-neuronal cells.ResultsHere, we describe a protocol to selectively tag neuronal nuclei from adult brain – either by (anti-NeuN) immunolabeling or transgene-derived histone H2B-GFP fusion protein – for subsequent fluorescence-activated sorting and chromatin immunoprecipitation (ChIP). To illustrate an example, we compared histone H3 lysine 4 and 9 methylation marks at select gene promoters in neuronal, non-neuronal and unsorted chromatin from mouse forebrain and human cerebral cortex, and provide evidence for neuron-specific histone methylation signatures.ConclusionWith the modifications detailed in this protocol, the method can be used to collect nuclei from specific subtypes of neurons from any brain region for subsequent ChIP with native/un-fixed or crosslinked chromatin preparations. Starting with the harvest of brain tissue, ChIP-ready neuronal nuclei can be obtained within one day.


Journal of Neuroscience Methods | 2006

Chromatin immunoprecipitation in postmortem brain

Hsien-Sung Huang; Anouch Matevossian; Yan Jiang; Schahram Akbarian

Methylation and other covalent modifications of nucleosome core histones are key regulators of chromatin structure and function, including epigenetic control of gene expression. For the human brain, however, very little is known about the regulation of histone modifications at specific genomic loci. Furthermore, chromatin immunoprecipitation protocols applicable to postmortem tissue are lacking, and the impact of potential confounds such as autolysis time or tissue pH is unknown. We treated cerebral cortex from human postmortem brain and mice by micrococcal nuclease digestion or, alternatively, by formaldehyde-crosslinking and sonication. We show that the bulk of nucleosomal DNA remains attached to histones during the first 30 h after death. Immunoprecipitation with antibodies against methylated histones was at least 10-fold more effective in unfixed, micrococcal nuclease-digested samples, in comparison to extracts prepared by fixation and sonication. Histone methylation differences across various genomic sites were maintained within a wide range of autolysis times and tissue pH. Therefore, immunoprecipitation of micrococcal nuclease-digested tissue extracts is a feasible approach to profile histone methylation at defined genomic loci in postmortem brain.


Behavioural Brain Research | 2013

Behavioral deficits in an Angelman syndrome model: Effects of genetic background and age

Hsien-Sung Huang; Andrew J. Burns; Randal J. Nonneman; Lorinda K. Baker; Natallia V. Riddick; Viktoriya D. Nikolova; Thorfinn T. Riday; Koji Yashiro; Benjamin D. Philpot; Sheryl S. Moy

Angelman syndrome (AS) is a severe neurodevelopmental disorder associated with disruption of maternally inherited UBE3A (ubiquitin protein ligase E3A) expression. At the present time, there is no effective treatment for AS. Mouse lines with loss of maternal Ube3a (Ube3a(m-/p+)) recapitulate multiple aspects of the clinical AS profile, including impaired motor coordination, learning deficits, and seizures. Thus, these genetic mouse models could serve as behavioral screens for preclinical efficacy testing, a critical component of drug discovery for AS intervention. However, the severity and consistency of abnormal phenotypes reported in Ube3a(m-/p+) mice can vary, dependent upon age and background strain, which is problematic for the detection of beneficial drug effects. As part of an ongoing AS drug discovery initiative, we characterized Ube3a(m-/p+) mice on either a 129S7/SvEvBrd-Hprt(b-m2) (129) or C57BL/6J (B6) background across a range of functional domains and ages to identify reproducible and sufficiently large phenotypes suitable for screening therapeutic compounds. The results from the study showed that Ube3a(m-/p+) mice have significant deficits in acquisition and reversal learning in the Morris water maze. The findings also demonstrated that Ube3a(m-/p+) mice exhibit motor impairment in a rotarod task, hypoactivity, reduced rearing and marble-burying, and deficient fear conditioning. Overall, these profiles of abnormal phenotypes can provide behavioral targets for evaluating effects of novel therapeutic strategies relevant to AS.


Journal of Biological Chemistry | 2010

Chromatin Protein L3MBTL1 Is Dispensable for Development and Tumor Suppression in Mice

Jinzhong Qin; Denille Van Buren; Hsien-Sung Huang; Lei Zhong; Raul Mostoslavsky; Schahram Akbarian; Hanno Hock

L3MBTL1, a paralogue of Drosophila tumor suppressor lethal(3)malignant brain tumor (l(3)mbt), binds histones in a methylation state-dependent manner and contributes to higher order chromatin structure and transcriptional repression. It is the founding member of a family of MBT domain-containing proteins that has three members in Drosophila and nine in mice and humans. Knockdown experiments in cell lines suggested that L3MBTL1 has non-redundant roles in the suppression of oncogene expression. We generated a mutant mouse strain that lacks exons 13–20 of L3mbtl1. Markedly reduced levels of a mutant mRNA with an out-of-frame fusion of exons 12 and 21 were expressed, but a mutant protein was undetectable by Western blot analysis. L3MBTL1−/− mice developed and reproduced normally. The highest expression of L3MBTL1 was detected in the brain, but its disruption did not affect brain development, spontaneous movement, and motor coordination. Despite previous implications of L3mbtl1 in the biology of hematopoietic transcriptional regulators, lack of L3MBTL1 did not result in deficiencies in lymphopoiesis or hematopoiesis. In contrast with its demonstrated biochemical activities, embryonic stem (ES) cells lacking L3MBTL1 displayed no abnormalities in H4 lysine 20 (H4K20) mono-, di-, or trimethylation; had normal global chromatin density as assessed by micrococcal nuclease digests; and expressed normal levels of c-myc. Embryonic fibroblasts lacking L3MBTL1 displayed unaltered cell cycle arrest and down-regulation of cyclin E expression after irradiation. In cohorts of mice followed for more than 2 years, lack of L3MBTL1 did not alter normal lifespan or survival with or without sublethal irradiation.

Collaboration


Dive into the Hsien-Sung Huang's collaboration.

Top Co-Authors

Avatar

Schahram Akbarian

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Benjamin D. Philpot

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark J. Zylka

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Chih-Hsuan Chou

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Anouch Matevossian

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Chun-Che Tung

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Angela M. Mabb

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Bryan L. Roth

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Ian F. King

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge