Hsin-Ell Wang
National Yang-Ming University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hsin-Ell Wang.
BioMed Research International | 2010
Gann Ting; Chih-Hsien Chang; Hsin-Ell Wang; Te-Wei Lee
Current progress in nanomedicine has exploited the possibility of designing tumor-targeted nanocarriers being able to deliver radionuclide payloads in a site or molecular selective manner to improve the efficacy and safety of cancer imaging and therapy. Radionuclides of auger electron-, α-, β-, and γ-radiation emitters have been surface-bioconjugated or after-loaded in nanoparticles to improve the efficacy and reduce the toxicity of cancer imaging and therapy in preclinical and clinical studies. This article provides a brief overview of current status of applications, advantages, problems, up-to-date research and development, and future prospects of nanotargeted radionuclides in cancer nuclear imaging and radiotherapy. Passive and active nanotargeting delivery of radionuclides with illustrating examples for tumor imaging and therapy are reviewed and summarized. Research on combing different modes of selective delivery of radionuclides through nanocarriers targeted delivery for tumor imaging and therapy offers the new possibility of large increases in cancer diagnostic efficacy and therapeutic index. However, further efforts and challenges in preclinical and clinical efficacy and toxicity studies are required to translate those advanced technologies to the clinical applications for cancer patients.
Nuclear Medicine and Biology | 2009
Ren-Shyan Liu; Ta-Kai Chou; Chih-Hsien Chang; Chun-Yi Wu; Chi-Wei Chang; Tsui-Jung Chang; Shih-Jen Wang; Wuu-Jyh Lin; Hsin-Ell Wang
UNLABELLED 2-Deoxy-2-[(18)F]fluoro-d-glucose ([(18)F]FDG), [(18)F]fluoroacetate ([(18)F]FAc) and [(18)F]fluoromisonidazole ([(18)F]FMISO) were all considered to be positron emission tomography (PET) probes for tumor diagnosis, though based on different rationale of tissue uptake. This study compared the biodistribution, pharmacokinetics and imaging of these three tracers in a sarcoma- and inflammation-bearing mouse model. METHODS C3H mice were inoculated with 2x10(5) KHT sarcoma cells in the right thigh on Day 0. Turpentine oil (0.1 ml) was injected in the left thigh on Day 11 to induce inflammatory lesion. Biodistribution, pharmacokinetics and microPET imaging of [(18)F]FMISO, [(18)F]FDG and [(18)F]FAc were performed on Day 14 after tumor inoculation. RESULTS The inflammatory lesions were clearly visualized by [(18)F]FDG/microPET and autoradiography at 3 days after turpentine oil injection. The tumor-to-muscle and inflammatory lesion-to-muscle ratios derived from microPET imaging were 6.79 and 1.48 for [(18)F]FMISO, 8.12 and 4.69 for [(18)F]FDG and 3.72 and 3.19 for [(18)F]FAc at 4 h post injection, respectively. Among these, the tumor-to-inflammation ratio was the highest (4.57) for [(18)F]FMISO compared with that of [(18)F]FDG (1.73) and [(18)F]FAc (1.17), whereas [(18)F]FAc has the highest bioavailability (area under concentration of radiotracer vs. time curve, 116.2 hxpercentage of injected dose per gram of tissue). CONCLUSIONS MicroPET images and biodistribution studies showed that the accumulation of [(18)F]FMISO in the tumor is significantly higher than that in inflammatory lesion at 4 h post injection. [(18)F]FDG and [(18)F]FAc delineated both tumor and inflammatory lesions. Our results demonstrated the potential of [(18)F]FMISO/PET in distinguishing tumor from inflammatory lesion.
The Journal of Nuclear Medicine | 2009
Tong-Hsien Chow; Yi-Yu Lin; Jeng-Jong Hwang; Hsin-Ell Wang; Yun-Long Tseng; Victor Fei Pang; Ren-Shyan Liu; Wuu-Jyh Lin; Chung-Shi Yang; Gann Ting
In our previous studies using combined radioisotopes with chemotherapeutic liposomal drugs (i.e., 111In-labeled polyethylene glycol (PEG)ylated liposomal vinorelbine) we have reported possible therapeutic efficiency in tumor growth suppression. Nevertheless, the challenge remains as to whether this chemotherapy has a therapeutic effect as good as that of combination therapy. The goal of this study was to investigate the real therapeutic effectiveness of 6 mol% PEG 111In-vinorelbine liposomes via the elevation of the radiation dosage and reduction in the concentration of chemotherapeutic agents. Methods: Murine colon carcinoma cells transfected with dual-reporter genes (CT-26/tk-luc) were xenografted into BALB/c mice. The biodistribution was estimated to determine the drug profile and targeting efficiency of 111In-vinorelbine liposomes. Bioluminescence imaging and 18F-FDG small-animal PET were applied to monitor the therapeutic response after drug administration. The survival in vivo was estimated and linked with the toxicologic and histopathologic analyses to determine the preclinical safety and feasibility of the nanomedicine. Results: Effective long-term circulation of radioactivity in the plasma was achieved by 6 mol% PEG 111In-vinorelbine liposomes, and this dose showed significantly lower uptake in the reticuloendothelial system than that of 0.9 mol% PEG 111In-vinorelbine liposomes. Selective tumor uptake was represented by cumulative deposition, and the maximum accumulation was at 48 h after injection. The combination therapy exhibited an additive effect for tumor growth suppression as tracked by caliper measurement, bioluminescence imaging, and small-animal PET. Furthermore, an improved survival rate and reduced tissue toxicity were closely correlated with the toxicologic and histopathologic results. Conclusion: The results demonstrated that the use of 6 mol% PEG 111In-vinorelbine liposomes for passively targeted tumor therapy displayed an additive effect with combined therapy, not only by prolonging the circulation rate because of a reduction in the phagocytic effect of the reticuloendothelial system but also by enhancing tumor uptake. Thus, this preclinical study suggests that 6 mol% PEG 111In-vinorelbine liposomes have the potential to increase the therapeutic index and reduce the toxicity of the passively nanotargeted chemoradiotherapies.
PLOS ONE | 2012
Feng-Yi Yang; Hsin-Ell Wang; Ren-Shyan Liu; Ming-Che Teng; Jia-Je Li; Maggie Lu; Ming Cheng Wei; Tai-Tong Wong
The goal of this study was to evaluate the pharmacokinetics of targeted and untargeted 111In-doxorubicin liposomes after these have been intravenously administrated to tumor-bearing mice in the presence of blood-brain barrier disruption (BBB-D) induced by focused ultrasound (FUS). An intracranial brain tumor model in NOD-scid mice using human brain glioblastoma multiforme (GBM) 8401 cells was developed in this study. 111In-labeled human atherosclerotic plaque-specific peptide-1 (AP-1)-conjugated liposomes containing doxorubicin (Lipo-Dox; AP-1 Lipo-Dox) were used as a microSPECT probe for radioactivity measurements in the GBM-bearing mice. Compared to the control tumors treated with an injection of 111In-AP-1 Lipo-Dox or 111In-Lipo-Dox, the animals receiving the drugs followed by FUS exhibited enhanced accumulation of the drug in the brain tumors (p<0.05). Combining sonication with drugs significantly increased the tumor-to-normal brain doxorubicin ratio of the target tumors compared to the control tumors. The tumor-to-normal brain ratio was highest after the injection of 111In-AP-1 Lipo-Dox with sonication. The 111In-liposomes micro-SPECT/CT should be able to provide important information about the optimum therapeutic window for the chemotherapy of brain tumors using sonication.
The Journal of Nuclear Medicine | 2011
Feng-Yi Yang; Hsin-Ell Wang; Guan-Liang Lin; Ming-Che Teng; Hui-Hsien Lin; Tai-Tong Wong; Ren-Shyan Liu
This study evaluated the pharmacokinetics of 99mTc-diethylenetriamine pentaacetate acid (99mTc-DTPA) after intravenous administration in healthy and F98 glioma–bearing F344 rats in the presence of blood–brain barrier disruption (BBB-D) induced by focused ultrasound (FUS). The pharmacokinetics of the healthy and tumor-containing brains after BBB-D were compared to identify the optimal time period for combined treatment. Methods: Healthy and F98 glioma–bearing rats were injected intravenously with Evans blue (EB) and 99mTc-DTPA; these treatments took place with or without BBB-D induced by transcranial FUS of 1 hemisphere of the brain. The permeability of the BBB was quantified by EB extravasation. Twelve rats were scanned for 2 h to estimate uptake of 99mTc radioactivity with respect to time for the pharmacokinetic analysis. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining was performed to examine tissue damage. Results: The accumulations of EB and 99mTc-DTPA in normal brains or brains with a tumor were significantly elevated after the intravenous injection when BBB-D was induced. The disruption-to-nondisruption ratio of the brains and the tumor–to–ipsilateral brain ratio of the tumors in terms of radioactivity reached a peak at 45 and 60 min, respectively. EB injection followed by sonication showed that there was an increase of about 2-fold in the tumor–to–ipsilateral brain EB ratio of the target tumors (7.36), compared with the control tumors (3.73). TUNEL staining showed no significant differences between the sonicated tumors and control tumors. Conclusion: This study demonstrates that 99mTc-DTPA micro-SPECT/CT can be used for the pharmacokinetic analysis of BBB-D induced by FUS. This method should be able to provide important information that will help with establishing an optimal treatment protocol for drug administration after FUS-induced BBB-D in clinical brain disease therapy.
IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2011
Feng-Yi Yang; Guan-Liang Lin; Shih-Cheng Horng; Tien-Kuei Chang; Shih-Yen Wu; Tai-Tong Wong; Hsin-Ell Wang
The use of pulsed high-intensity focused ultrasound (HIFU) with an ultrasound contrast agent (UCA) has been shown to disrupt the blood-brain barrier (BBB) noninvasively and reversibly in the targeted regions. This study evaluated the relative permeability of the blood-tumor barrier (BTB) after sonication by pulsed HIFU. Entry into the brain of chemotherapeutic agents is impeded by the BBB even though the permeability of this barrier may be partially reduced in the presence of a brain tumor. F98 glioma-bearing rats were injected intravenously with Evans blue (EB) with or without BTB disruption induced by pulsed HIFU. Sonication was applied at an ultrasound frequency of 1 MHz with a 5% duty cycle, and a repetition frequency of 1 Hz. The accumulation of EB in brain tumor and the tumor-to-contralateral brain ratio of EB were highest after pulsed HIFU exposure. Sonication followed by EB injection showed a tumor-to-contralateral brain ratio in the target tumors which was about 2 times that of the control tumors. This research demonstrates that pulsed HIFU enhances the relative permeability of the BTB in glioma- bearing rats. The results of this pilot study support the idea that further evaluation of other treatment strategies, such as HIFU exposure in addition to combined chemotherapy or repeated pulsed HIFU exposure to increase delivery of drugs into brain tumors, might be useful.
Cancer Biotherapy and Radiopharmaceuticals | 2009
Yi-Yu Lin; Jia-Je Li; Chih-Hsien Chang; Yi-Ching Lu; Jeng-Jong Hwang; Yun-Long Tseng; Wuu-Jyh Lin; Gann Ting; Hsin-Ell Wang
Nanoliposomes are important drug carriers that can passively target tumor sites by the enhanced permeability and retention (EPR) effect in neoplasm lesions. This study evaluated the biodistribution and pharmacokinetics of 111In-labeled vinorelbine (VNB)-encapsulated PEGylated liposomes (IVNBPL) after intraperitoneal (i.p.) and intravenous (i.v.) administration in a C26/tk-luc colon carcinoma ascites mouse model. IVNBPL was prepared by labeling VNB-encapsulated PEGylated liposomes with 111In-oxine. BALB/c mice were i.p. inoculated with 2 x 10(5) C26/tk-luc cells in 500 muL of phosphate-buffered saline. Peritoneal tumor lesions were confirmed by 124I-FIAU/micro-PET (positron emission tomography) and bioluminescence imaging. Ascites production was examined by ultrasound imaging on day 10 after tumor cell inoculation. The pharmacokinetics and biodistribution studies of IVNBPL in a tumor/ascites mouse model were conducted. The labeling efficiency was more than 90%. The in vitro stability in human plasma at 37 degrees C for 72 hours was 83% +/- 3.5%. For i.p. administration, the areas under curves (AUCs) of ascites and tumor were 6.78- and 1.70-fold higher, whereas the AUCs of normal tissues were lower than those via the i.v. route. This study demonstrates that i.p. administration is a better approach than i.v. injection for IVNBPL, when applied to the treatment of i.p. malignant disease in a tumor/ascites mouse model.
Bioorganic & Medicinal Chemistry Letters | 2013
Hao-Wen Kao; Yi-Yu Lin; Chao-Cheng Chen; Kwan-Hwa Chi; Der-Chi Tien; Chien-Chung Hsia; Ming-Hsien Lin; Hsin-Ell Wang
This study evaluated the tumor targeting and therapeutic efficacy of a novel theranostic agent (131)I-labeled immuno-gold-nanoparticle ((131)I-C225-AuNPs-PEG) for high epidermal growth factor receptor (EGFR)-expressed A549 human lung cancer. Confocal microscopy demonstrated the specific uptake of C225-AuNPs-PEG in A549 cells. (131)I-C225-AuNPs-PEG induced a significant reduction in cell viability, which was not observed when incubated with AuNPs-PEG and C225-AuNPs-PEG. MicroSPECT/CT imaging of tumor-bearing mice after intravenous injection of (123)I-C225-AuNPs-PEG revealed significant radioactivity retention in tumor suggested that (131)I-labeled C225-conjugated radioimmuno-gold-nanoparticles may provide a new approach of targeted imaging and therapy towards high EGFR-expressed cancers.
International Journal of Oncology | 2014
Fei-Ting Hsu; Yu-Chang Liu; I-Tsang Chiang; Ren-Shyan Liu; Hsin-Ell Wang; Wuu-Jyh Lin; Jeng-Jong Hwang
Sorafenib is effective for patients with advanced hepatocellular carcinoma (HCC) and particularly for those who are unsuitable to receive life-prolonging transarterial chemo-embolization. The survival benefit of sorafenib, however, is unsatisfactory. Vorinostat also known as suberoylanilide hydroxamic acid (SAHA) is a histone deacetylase (HDAC) inhibitor with anti-HCC efficacy in preclinical studies. SAHA induces nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) activity in vitro, which may lead to cancer cell progression and jeopardize cytotoxic effect of SAHA in HCC. The goal of this study was to investigate whether sorafenib enhances SAHA cytotoxicity against HCC through inhibition of SAHA-induced NF-κB activity. The human HCC cell line Huh7 transfected with dual reporter genes, luciferase (luc) and thymidine kinase (tk) with NF-κB response elements, was co-transfected with red fluorescent protein (rfp) gene for non-invasive molecular imaging to assess NF-κB activity and living cells simultaneously. Cell viability assay, DNA fragmentation, western blotting, electrophoretic mobility shift assay (EMSA) and multiple modalities of molecular imaging were used to assess the combination efficacy and mechanism of sorafenib and SAHA. The administration of high-dose SAHA (10 µM) with long treatment time (48 h) in vitro, and 25 mg/kg/day by gavage in HCC-bearing nude mice to induce NF-κB activity were performed. Sorafenib inhibited SAHA-induced NF-κB activity and the expression of NF-κB-regulated effector proteins while it increased the efficacy of SAHA against HCC both in vitro and in vivo. The mechanism of sorafenib to enhance SAHA efficacy on HCC is through the suppression of ERK/NF-κB pathway, which induces extrinsic and intrinsic apoptosis. Combination of sorafenib and SAHA may have the potential as new strategy against HCC.
Nanotechnology | 2014
Hao-Wen Kao; Yi-Yu Lin; Chao-Cheng Chen; Kwan-Hwa Chi; Der-Chi Tien; Chien-Chung Hsia; Wuu-Jyh Lin; Fu-Du Chen; Ming-Hsien Lin; Hsin-Ell Wang
Gold nanoparticles (AuNPs) are widely applied to the diagnosis and treatment of cancer and can be modified to contain target-specific ligands via gold-thiolate bonding. This study investigated the pharmacokinetics and microdistribution of antibody-mediated active targeting gold nanoparticles in mice with subcutaneous lung carcinoma. We conjugated AuNPs with cetuximab (C225), an antibody-targeting epidermal growth factor receptor (EGFR), and then labeled with In-111, which created EGFR-targeted AuNPs. In vitro studies showed that after a 2 h incubation, the uptake of C225-conjugated AuNPs in high EGFR-expression A549 cells was 14.9-fold higher than that of PEGylated AuNPs; furthermore, uptake was also higher at 3.8-fold when MCF7 cells with lower EGFR-expression were used. MicroSPECT/CT imaging and a biodistribution study conducted by using a A549 tumor xenograft mouse model provided evidence of elevated uptake of the C225-conjugated AuNPs into the tumor cells as a result of active targeting. Moreover, the microdistribution of PEGylated AuNPs revealed that a large portion of AuNPs remained in the tumor interstitium, whereas the C225-conjugated AuNPs displayed enhanced internalization via antibody-mediated endocytosis. Our findings suggest that the anti-EGFR antibody-conjugated AuNPs are likely to be a plausible nano-sized vehicle for drug delivery to EGFR-expressing tumors.