Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hsin-Yi Tseng is active.

Publication


Featured researches published by Hsin-Yi Tseng.


Oncogene | 2013

MicroRNA-497 targets insulin-like growth factor 1 receptor and has a tumour suppressive role in human colorectal cancer

Su Tang Guo; Chen Chen Jiang; Wang Gp; Yong Li; Wang Cy; Xiang Yun Guo; Yang Rh; Yuchen Feng; Fan Wang; Hsin-Yi Tseng; Rick F. Thorne; Lei Jin; Xu Dong Zhang

Past studies have shown that amplified insulin-like growth factor 1 (IGF1)/IGF1 receptor (IGF1-R) signalling has an important role in colorectal cancer (CRC) development, progression and resistance to treatment. In this report, we demonstrate that downregulation of microRNA-497 (miR-497) as a result of DNA copy number reduction is involved in upregulation of IGF1-R in CRC cells. MiR-497 and miR-195 of the miR-15/16/195/424/497 family that share the same 3′ untranslated region (3′UTR) binding seed sequence and are predicted to target IGF1-R were concurrently downregulated in the majority of CRC tissues relative to paired adjacent normal mucosa. However, only overexpression of miR-497 led to suppression of the IGF1-R 3′UTR activity and downregulation of the endogenous IGF1-R protein in CRC cells. This was associated with inhibition of cell survival, proliferation and invasion, and increased sensitivity to apoptosis induced by various stimuli including the chemotherapeutic drugs cisplatin and 5-fluorouracil, and the death ligand tumour necrosis factor-related apoptosis-inducing ligand. The biological effect of miR-497 on CRC cells was largely mediated by inhibition of phosphatidylinositol 3-kinase/Akt signalling, as overexpression of an active form of Akt reversed its impact on cell survival and proliferation, recapitulating the effect of overexpression of IGF1-R. Downregulation of miR-497 and miR-195 appeared to associate with copy number loss of a segment of chromosome 17p13.1, where these miRs are located at proximity. Similarly to miR-195, the members of the same miR family, miR-424 that was upregulated, and miR-15a, miR-15b and miR-16 that were unaltered in expression in CRC tissues compared with paired adjacent normal mucosa, did not appear to have a role in regulating the expression of IGF1-R. Taken together, these results identify downregulation of miR-497 as an important mechanism of upregulation of IGF1-R in CRC cells that contributes to malignancy of CRC.


Molecular Cancer | 2009

2-Deoxy-D-glucose enhances TRAIL-induced apoptosis in human melanoma cells through XBP-1-mediated up-regulation of TRAIL-R2

Hao Liu; Chen Chen Jiang; Christopher Lavis; Amanda Croft; Li Dong; Hsin-Yi Tseng; Fan Yang; Kwang Hong Tay; Peter Hersey; Xu Dong Zhang

BackgroundPast studies have shown that sensitivity of melanoma cells to TRAIL-induced apoptosis is largely correlated with the expression levels of TRAIL death receptors on the cell surface. However, fresh melanoma isolates and melanoma tissue sections express generally low levels of death receptors for TRAIL. The clinical potential of TRAIL in the treatment of melanoma may therefore be limited unless given with agents that increase the cell surface expression of TRAIL death receptors. 2-Deoxy-D-glucose (2-DG) is a synthetic glucose analogue that inhibits glycolysis and glycosylation and blocks cell growth. It has been in clinical evaluation for its potential use as an anticancer agent. In this study, we have examined whether 2-DG and TRAIL interact to enhance their cytotoxicity towards melanoma cells.Results2-DG did not kill melanoma cells, but enhanced TRAIL-induced apoptosis in cultured melanoma cells and fresh melanoma isolates. This was associated with increased activation of the caspase cascade and mitochondrial apoptotic pathway, and was blocked by inhibition of TRAIL-R2, and to a lesser extent, inhibition of TRAIL-R1. Treatment with 2-DG up-regulated TRAIL death receptors, in particular, TRAIL-R2, on the melanoma cell surface. Up-regulation of TRAIL-R2 was due to increased transcription that was not dependent on the transcription factors, p53 and CHOP. Instead, the IRE1α and ATF6 pathways of the unfolded protein response that were activated by 2-DG appeared to be involved. Moreover, XBP-1, which is known to be transcriptionally regulated by ATF6 and functionally activated by IRE1α, was found to play an important role in 2-DG-mediated transcriptional up-regulation of TRAIL-R2 in melanoma cells.ConclusionThese results indicate that 2-DG sensitizes human melanoma cells to TRAIL-induced apoptosis by up-regulation of TRAIL-2 via the ATF6/IRE1α/XBP-1 axis of the unfolded protein response. They suggest that 2-DG is a promising agent to increase the therapeutic response to TRAIL in melanoma.


Nature Communications | 2013

PI(4,5)P2 5-phosphatase A regulates PI3K/Akt signalling and has a tumour suppressive role in human melanoma

Yan Ye; Lei Jin; James S. Wilmott; Wang Lai Hu; Benafsha Yosufi; Rick F. Thorne; Tao Liu; Helen Rizos; Xu Guang Yan; Li Dong; Kwang Hong Tay; Hsin-Yi Tseng; Su Tang Guo; Charles E. de Bock; Chen Chen Jiang; Chun Yan Wang; Mian Wu; Lin Jie Zhang; Peter Hersey; Richard A. Scolyer; Xu Dong Zhang

Inositol polyphosphate 5-phosphatases can terminate downstream signalling of phosphatidylinositol-3 kinase; however, their biological role in the pathogenesis of cancer is controversial. Here we report that the inositol polyphosphate 5-phosphatase, phosphatidylinositol 4,5-bisphosphate 5-phosphatase, has a tumour suppressive role in melanoma. Although it is commonly downregulated in melanoma, overexpression of phosphatidylinositol 4,5-bisphosphate 5-phosphatase blocks Akt activation, inhibits proliferation and undermines survival of melanoma cells in vitro, and retards melanoma growth in a xenograft model. In contrast, knockdown of phosphatidylinositol 4,5-bisphosphate 5-phosphatase results in increased proliferation and anchorage-independent growth of melanocytes. Although DNA copy number loss is responsible for downregulation of phosphatidylinositol 4,5-bisphosphate 5-phosphatase in a proportion of melanomas, histone hypoacetylation mediated by histone deacetylases HDAC2 and HDAC3 through binding to the transcription factor Sp1 at the PIB5PA gene promoter appears to be another commonly involved mechanism. Collectively, these results establish the tumour suppressive role of phosphatidylinositol 4,5-bisphosphate 5-phosphatase and reveal mechanisms involved in its downregulation in melanoma.


Cell Death & Differentiation | 2010

Cystatin B inhibition of TRAIL-induced apoptosis is associated with the protection of FLIPL from degradation by the E3 ligase itch in human melanoma cells

Fan Yang; Kwang Hong Tay; Li Dong; Rick F. Thorne; Chen Chen Jiang; Elizabeth Yang; Hsin-Yi Tseng; Hao Liu; Christopherson R; Peter Hersey; Xu Dong Zhang

Past studies have identified a number of distinct mechanisms that contribute to the resistance of melanoma cells against apoptosis induced by TNF-related apoptosis-inducing ligand (TRAIL). In this report we show that cystatin B is another endogenous inhibitor of TRAIL-induced apoptosis. Cystatin B-deficient melanoma cell lines established by shRNA knockdown displayed increased apoptosis that was associated with enhanced activation of caspase-8 induced by TRAIL. This was not related to the inhibitory effect of cystatin B on the lysosomal cysteine proteases, cathepsin B and L, as they did not have a role in TRAIL-induced apoptosis in most melanoma cell lines even when cystatin B was inhibited. Instead, sensitization of melanoma cells to TRAIL-induced apoptosis by inhibition of cystatin B appeared associated with decreased stability of FLIPL as the levels of FLIPL were reduced because of shortened half-life time in melanoma cells deficient in cystatin B. In contrast, over-expression of cystatin B increased the levels of FLIPL, decreased the amount of the E3 ligase Itch associated with FLIPL, and reduced FLIPL ubiquitination. Inhibition of Itch by siRNA restored the levels of FLIPL and blocked sensitization to TRAIL-induced apoptosis associated with deficiency in cystatin B. Taken together, these results indicate that cystatin B regulates Itch-mediated degradation of FLIPL and thereby TRAIL-induced apoptosis in melanoma cells.


Cellular Signalling | 2014

Sustained IRE1 and ATF6 signaling is important for survival of melanoma cells undergoing ER stress

Kwang Hong Tay; Qi Luan; Amanda Croft; Chen Chen Jiang; Lei Jin; Xu Dong Zhang; Hsin-Yi Tseng

Apoptosis triggered by endoplasmic reticulum (ER) stress is associated with rapid attenuation of the IRE1α and ATF6 pathways but persistent activation of the PERK branch of the unfolded protein response (UPR) in cells. However, melanoma cells are largely resistant to ER stress-induced apoptosis, suggesting that the kinetics and durations of activation of the UPR pathways are deregulated in melanoma cells undergoing ER stress. We show here that the IRE1α and ATF6 pathways are sustained along with the PERK signaling in melanoma cells subjected to pharmacological ER stress, and that this is, at least in part, due to increased activation of the MEK/ERK pathway. In contrast to an initial increase followed by rapid reduction in activation of IRE1α and ATF6 signaling in control cells that were relatively sensitive to ER stress-induced apoptosis, activation of IRE1α and ATF6 by the pharmacological ER stress inducer tunicamycin (TM) or thapsigargin (TG) persisted in melanoma cells. On the other hand, the increase in PERK signaling lasted similarly in both types of cells. Sustained activation of IRE1α and ATF6 signaling played an important role in protecting melanoma cells from ER stress-induced apoptosis, as interruption of IRE1α or ATF6 rendered melanoma cells sensitive to apoptosis induced by TM or TG. Inhibition of MEK partially blocked IRE1α and ATF6 activation, suggesting that MEK/ERK signaling contributed to sustained activation of IRE1α and ATF6. Taken together, these results identify sustained activation of the IRE1α and ATF6 pathways of the UPR driven by the MEK/ERK pathway as an important protective mechanism against ER stress-induced apoptosis in melanoma cells.


Autophagy | 2012

Autophagy-mediated HMGB1 release antagonizes apoptosis of gastric cancer cells induced by vincristine via transcriptional regulation of Mcl-1

Zhenzhen Zhan; Qun Li; Ping Wu; Yan Ye; Hsin-Yi Tseng; Linjie Zhang; Xu Dong Zhang

Autophagy-associated release of HMGB1 is known to protect cancer cells from many chemotherapeutics. However, the detailed molecular mechanism(s) responsible remains largely undefined. We show in this study that HMGB1 released into the extracellular space protects gastric cancer cells from apoptosis induced by the microtubule-targeting drug vincristine through transcriptional upregulation of Mcl-1. Extracellular HMGB1 appeared essential for autophagy-mediated inhibition of apoptosis, in that siRNA knockdown of HMGB1 or inhibition of its release abolished the protective effect of autophagy. Strikingly, vincristine upregulated the Mcl-1 mRNA expression through a transcriptional increase, but did not alter the expression levels of the Mcl-1 protein. Inhibition of HMGB1 release blocked the increase in the Mcl-1 transcript and caused reduction in Mcl-1 at the protein level, indicating that HMGB1-mediated signaling was necessary for transcriptional upregulation of Mcl-1. This seemed critical for maintaining sufficient Mcl-1 protein expression required for survival of gastric cancer cells exposed to vincristine. The effect of extracellular HMGB1 on transcriptional regulation of Mcl-1 was confirmed in gastric cancer cells treated with recombinant HMGB1. Taken together, these results identify HMGB1-mediated upregulation of Mcl-1 transcription as an important mechanism by which autophagy protects gastric cancer cells from apoptosis induced by vincristine.


Cell Death and Disease | 2013

Cotargeting histone deacetylases and oncogenic BRAF synergistically kills human melanoma cells by necrosis independently of RIPK1 and RIPK3

Fritz Lai; St T. Guo; Lei Jin; Cc C. Jiang; Wang Cy; Croft A; Mn N. Chi; Hsin-Yi Tseng; Margaret Farrelly; Bernard Atmadibrata; J. Norman; Tao Liu; Peter Hersey; Xd D. Zhang

Past studies have shown that histone deacetylase (HDAC) and mutant BRAF (v-Raf murine sarcoma viral oncogene homolog B1) inhibitors synergistically kill melanoma cells with activating mutations in BRAF. However, the mechanism(s) involved remains less understood. Here, we report that combinations of HDAC and BRAF inhibitors kill BRAFV600E melanoma cells by induction of necrosis. Cotreatment with the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) or panobinostat (LBH589) and the BRAF inhibitor PLX4720 activated the caspase cascade, but caspases appeared dispensable for killing, in that inhibition of caspases did not invariably block induction of cell death. The majority of dying cells acquired propidium iodide positivity instantly when they became positive for Annexin V, suggesting induction of necrosis. This was supported by caspase-independent release of high-mobility group protein B1, and further consolidated by rupture of the plasma membrane and loss of nuclear and cytoplasmic contents, as manifested by transmission electron microscopic analysis. Of note, neither the necrosis inhibitor necrostatin-1 nor the small interference RNA (siRNA) knockdown of receptor-interacting protein kinase 3 (RIPK3) inhibited cell death, suggesting that RIPK1 and RIPK3 do not contribute to induction of necrosis by combinations of HDAC and BRAF inhibitors in BRAFV600E melanoma cells. Significantly, SAHA and the clinically available BRAF inhibitor vemurafenib cooperatively inhibited BRAFV600E melanoma xenograft growth in a mouse model even when caspase-3 was inhibited. Taken together, these results indicate that cotreatment with HDAC and BRAF inhibitors can bypass canonical cell death pathways to kill melanoma cells, which may be of therapeutic advantage in the treatment of melanoma.


Cancer Research | 2015

RIP1 kinase is an oncogenic driver in melanoma

Xiao Ying Liu; Fritz Lai; Xu Guang Yan; Chen Chen Jiang; Su Tang Guo; Chun Yan Wang; Amanda Croft; Hsin-Yi Tseng; James S. Wilmott; Richard A. Scolyer; Lei Jin; Xu Dong Zhang

Although many studies have uncovered an important role for the receptor-binding protein kinase RIP1 in controlling cell death signaling, its possible contributions to cancer pathogenesis have been little explored. Here, we report that RIP1 functions as an oncogenic driver in human melanoma. Although RIP1 was commonly upregulated in melanoma, RIP1 silencing inhibited melanoma cell proliferation in vitro and retarded the growth of melanoma xenografts in vivo. Conversely, while inducing apoptosis in a small proportion of melanoma cells, RIP1 overexpression enhanced proliferation in the remaining cells. Mechanistic investigations revealed that the proliferative effects of RIP1 overexpression were mediated by NF-κB activation. Strikingly, ectopic expression of RIP1 enhanced the proliferation of primary melanocytes, triggering their anchorage-independent cell growth in an NF-κB-dependent manner. We identified DNA copy-number gain and constitutive ubiquitination by a TNFα autocrine loop mechanism as two mechanisms of RIP1 upregulation in human melanomas. Collectively, our findings define RIP1 as an oncogenic driver in melanoma, with potential implications for targeting its NF-κB-dependent activation mechanism as a novel approach to treat this disease.


Cell Death and Disease | 2012

Suppression of PP2A is critical for protection of melanoma cells upon endoplasmic reticulum stress

Kwang Hong Tay; Lei Jin; Hsin-Yi Tseng; Chen Chen Jiang; Yan Ye; Rick F. Thorne; Tao Liu; Su Tang Guo; Nicole M. Verrills; Peter Hersey; Xu Dong Zhang

Endoplasmic reticulum (ER) stress triggers apoptosis by activating Bim in diverse types of cells, which involves dephosphorylation of BimEL by protein phosphatase 2A (PP2A). However, melanoma cells are largely resistant to ER stress-induced apoptosis, suggesting that Bim activation is suppressed in melanoma cells undergoing ER stress. We show here that ER stress reduces PP2A activity leading to increased ERK activation and subsequent phosphorylation and proteasomal degradation of BimEL. Despite sustained upregulation of Bim at the transcriptional level, the BimEL protein expression was downregulated after an initial increase in melanoma cells subjected to pharmacological ER stress. This was mediated by increased activity of ERK, whereas the phosphatase activity of PP2A was reduced by ER stress in melanoma cells. The increase in ERK activation was, at least in part, due to reduced dephosphorylation by PP2A, which was associated with downregulation of the PP2A catalytic C subunit. Notably, instead of direct dephosphorylation of BimEL, PP2A inhibited its phosphorylation indirectly through dephosphorylation of ERK in melanoma cells. Taken together, these results identify downregualtion of PP2A activity as an important protective mechanism of melanoma cells against ER stress-induced apoptosis.


Molecular Cancer Therapeutics | 2010

Contrasting Effects of Nutlin-3 on TRAIL- and Docetaxel-Induced Apoptosis Due to Upregulation of TRAIL-R2 and Mcl-1 in Human Melanoma Cells

Hsin-Yi Tseng; Chen Chen Jiang; Amanda Croft; Kwang Hong Tay; Rick F. Thorne; Fan Yang; Hao Liu; Peter Hersey; Xu Dong Zhang

Wild-type p53 is commonly expressed in melanoma but does not appear to be effective in the induction of apoptosis. One explanation is that p53 is targeted for degradation by the E3 ligase MDM2. However, we found in this study that blockade of the interaction of p53 and MDM2 by the MDM2 antagonist nutlin-3 in melanoma cells did not induce apoptosis, even though it upregulated p53 and its proapoptotic targets. Nevertheless, nutlin-3 enhanced TRAIL-induced apoptosis as a result of p53-mediated upregulation of TRAIL-R2. Unexpectedly, nutlin-3 upregulated Mcl-1, which attenuated apoptotic signaling triggered by TRAIL, and inhibited apoptosis induced by the microtubule-targeting drug docetaxel. The increase in Mcl-1 was related to a p53-independent transcriptional mechanism, but stabilization of the Mcl-1 protein played a dominant role, as nutlin-3 upregulated the Mcl-1 protein to a much greater extent than the Mcl-1 mRNA, and this was associated with prolonged half-life time and reduced ubiquitination of the protein. Knockdown of p53 blocked the upregulation of the Mcl-1 protein, indicating that p53 plays a critical role in the stabilization of Mcl-1. The contrasting effects of nutlin-3 on TRAIL- and docetaxel-induced apoptosis were confirmed in fresh melanoma isolates. Collectively, these results show that nutlin-3 may be a useful agent in combination with TRAIL and, importantly, uncover a novel regulatory effect of p53 on the expression of Mcl-1 in melanoma cells on treatment with nutlin-3, which may antagonize the therapeutic efficacy of other chemotherapeutic drugs in addition to docetaxel in melanoma. Mol Cancer Ther; 9(12); 3363–74. ©2010 AACR.

Collaboration


Dive into the Hsin-Yi Tseng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lei Jin

University of Sydney

View shared research outputs
Top Co-Authors

Avatar

Su Tang Guo

University of Newcastle

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xu Guang Yan

University of Newcastle

View shared research outputs
Top Co-Authors

Avatar

Yan Ye

University of Newcastle

View shared research outputs
Top Co-Authors

Avatar

Fritz Lai

University of Newcastle

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge