Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hsu Chao is active.

Publication


Featured researches published by Hsu Chao.


Genome Research | 2014

Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication

Eve Shinbrot; Erin E. Henninger; Nils Weinhold; Kyle Covington; A. Yasemin Göksenin; Nikolaus Schultz; Hsu Chao; HarshaVardhan Doddapaneni; Donna M. Muzny; Richard A. Gibbs; Chris Sander; Zachary F. Pursell; David A. Wheeler

Tumors with somatic mutations in the proofreading exonuclease domain of DNA polymerase epsilon (POLE-exo*) exhibit a novel mutator phenotype, with markedly elevated TCT→TAT and TCG→TTG mutations and overall mutation frequencies often exceeding 100 mutations/Mb. Here, we identify POLE-exo* tumors in numerous cancers and classify them into two groups, A and B, according to their mutational properties. Group A mutants are found only in POLE, whereas Group B mutants are found in POLE and POLD1 and appear to be nonfunctional. In Group A, cell-free polymerase assays confirm that mutations in the exonuclease domain result in high mutation frequencies with a preference for C→A mutation. We describe the patterns of amino acid substitutions caused by POLE-exo* and compare them to other tumor types. The nucleotide preference of POLE-exo* leads to increased frequencies of recurrent nonsense mutations in key tumor suppressors such as TP53, ATM, and PIK3R1. We further demonstrate that strand-specific mutation patterns arise from some of these POLE-exo* mutants during genome duplication. This is the first direct proof of leading strand-specific replication by human POLE, which has only been demonstrated in yeast so far. Taken together, the extremely high mutation frequency and strand specificity of mutations provide a unique identifier of eukaryotic origins of replication.


Modern Pathology | 2015

BCOR-CCNB3 fusions are frequent in undifferentiated sarcomas of male children.

Tricia L. Peters; Vijetha Kumar; Sumanth Polikepahad; Frank Y. Lin; Stephen F. Sarabia; Yu Liang; Wei-Lien Wang; Alexander J. Lazar; HarshaVardhan Doddapaneni; Hsu Chao; Donna M. Muzny; David A. Wheeler; M. Fatih Okcu; Sharon E. Plon; M. John Hicks; Dolores Lopez-Terrada; D. Williams Parsons; Angshumoy Roy

The BCOR–CCNB3 fusion gene, resulting from a chromosome X paracentric inversion, was recently described in translocation-negative ‘Ewing-like’ sarcomas arising in bone and soft tissue. Genetic subclassification of undifferentiated unclassified sarcomas may potentially offer markers for reproducible diagnosis and substrates for therapy. Using whole transcriptome paired-end RNA sequencing (RNA-seq) we unexpectedly identified BCOR–CCNB3 fusion transcripts in an undifferentiated spindle-cell sarcoma. RNA-seq results were confirmed through direct RT-PCR of tumor RNA and cloning of the genomic breakpoints from tumor DNA. Five additional undifferentiated sarcomas with BCOR–CCNB3 fusions were identified in a series of 42 pediatric and adult unclassified sarcomas. Genomic breakpoint analysis demonstrated unique breakpoint locations in each case at the DNA level even though the resulting fusion mRNA was identical in all cases. All patients with BCOR–CCNB3 sarcoma were males diagnosed in mid childhood (7–13 years of age). Tumors were equally distributed between axial and extra-axial locations. Five of the six tumors were soft-tissue lesions with either predominant spindle-cell morphology or spindle-cell areas interspersed with ovoid to round cells. CCNB3 immunohistochemistry showed strong nuclear positivity in five tumors before oncologic therapy, but was patchy to negative in post-treatment tumor samples. An RT-PCR assay developed to detect the fusion transcript in archival formalin-fixed tissue was positive in all six cases, with high sensitivity and specificity in both pre- and post-treated samples. This study adds to recent reports on the clinicopathologic spectrum of BCOR–CCNB3 fusion-positive sarcomas, a newly emerging entity within the undifferentiated unclassified sarcoma category and describes a simple RT-PCR assay that in conjunction with CCNB3 immunohistochemistry can be useful in diagnosing these tumors.


Nature Communications | 2016

Unique features of a global human ectoparasite identified through sequencing of the bed bug genome

Joshua B. Benoit; Zach N. Adelman; Klaus Reinhardt; Amanda Dolan; Monica Poelchau; Emily C. Jennings; Elise M. Szuter; Richard W. Hagan; Hemant Gujar; Jayendra Nath Shukla; Fang Zhu; M. Mohan; David R. Nelson; Andrew J. Rosendale; Christian Derst; Valentina Resnik; Sebastian Wernig; Pamela Menegazzi; Christian Wegener; Nicolai Peschel; Jacob M. Hendershot; Wolfgang Blenau; Reinhard Predel; Paul R. Johnston; Panagiotis Ioannidis; Robert M. Waterhouse; Ralf Nauen; Corinna Schorn; Mark Christoph Ott; Frank Maiwald

The bed bug, Cimex lectularius, has re-established itself as a ubiquitous human ectoparasite throughout much of the world during the past two decades. This global resurgence is likely linked to increased international travel and commerce in addition to widespread insecticide resistance. Analyses of the C. lectularius sequenced genome (650 Mb) and 14,220 predicted protein-coding genes provide a comprehensive representation of genes that are linked to traumatic insemination, a reduced chemosensory repertoire of genes related to obligate hematophagy, host–symbiont interactions, and several mechanisms of insecticide resistance. In addition, we document the presence of multiple putative lateral gene transfer events. Genome sequencing and annotation establish a solid foundation for future research on mechanisms of insecticide resistance, human–bed bug and symbiont–bed bug associations, and unique features of bed bug biology that contribute to the unprecedented success of C. lectularius as a human ectoparasite.


Genome Biology | 2016

Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface

Duane D. McKenna; Erin D. Scully; Yannick Pauchet; Kelli Hoover; Roy Kirsch; Scott M. Geib; Robert F. Mitchell; Robert M. Waterhouse; Seung Joon Ahn; Deanna Arsala; Joshua B. Benoit; Heath Blackmon; Tiffany Bledsoe; Julia H. Bowsher; André Busch; Bernarda Calla; Hsu Chao; Anna K. Childers; Christopher Childers; Dave J. Clarke; Lorna Cohen; Jeffery P. Demuth; Huyen Dinh; HarshaVardhan Doddapaneni; Amanda Dolan; Jian J. Duan; Shannon Dugan; Markus Friedrich; Karl M. Glastad; Michael A. D. Goodisman

BackgroundRelatively little is known about the genomic basis and evolution of wood-feeding in beetles. We undertook genome sequencing and annotation, gene expression assays, studies of plant cell wall degrading enzymes, and other functional and comparative studies of the Asian longhorned beetle, Anoplophora glabripennis, a globally significant invasive species capable of inflicting severe feeding damage on many important tree species. Complementary studies of genes encoding enzymes involved in digestion of woody plant tissues or detoxification of plant allelochemicals were undertaken with the genomes of 14 additional insects, including the newly sequenced emerald ash borer and bull-headed dung beetle.ResultsThe Asian longhorned beetle genome encodes a uniquely diverse arsenal of enzymes that can degrade the main polysaccharide networks in plant cell walls, detoxify plant allelochemicals, and otherwise facilitate feeding on woody plants. It has the metabolic plasticity needed to feed on diverse plant species, contributing to its highly invasive nature. Large expansions of chemosensory genes involved in the reception of pheromones and plant kairomones are consistent with the complexity of chemical cues it uses to find host plants and mates.ConclusionsAmplification and functional divergence of genes associated with specialized feeding on plants, including genes originally obtained via horizontal gene transfer from fungi and bacteria, contributed to the addition, expansion, and enhancement of the metabolic repertoire of the Asian longhorned beetle, certain other phytophagous beetles, and to a lesser degree, other phytophagous insects. Our results thus begin to establish a genomic basis for the evolutionary success of beetles on plants.


BMC Biology | 2017

The house spider genome reveals an ancient whole-genome duplication during arachnid evolution.

Evelyn E. Schwager; Prashant P. Sharma; Thomas H. Clarke; Daniel J. Leite; Torsten Wierschin; Matthias Pechmann; Yasuko Akiyama-Oda; Lauren Esposito; Jesper Bechsgaard; Trine Bilde; Alexandra D. Buffry; Hsu Chao; Huyen Dinh; HarshaVardhan Doddapaneni; Shannon Dugan; Cornelius Eibner; Cassandra G. Extavour; Peter Funch; Jessica E. Garb; Luis B. Gonzalez; Vanessa L. González; Sam Griffiths-Jones; Yi Han; Cheryl Y. Hayashi; Maarten Hilbrant; Daniel S.T. Hughes; Ralf Janssen; Sandra L. Lee; Ignacio Maeso; Shwetha C. Murali

BackgroundThe duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum.ResultsWe found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication.ConclusionsOur results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes.


Genome Biology | 2016

The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species

Alexie Papanicolaou; Marc F. Schetelig; Peter Arensburger; Peter W. Atkinson; Joshua B. Benoit; Kostas Bourtzis; Pedro Castañera; John P. Cavanaugh; Hsu Chao; Christopher Childers; Ingrid Curril; Huyen Dinh; HarshaVardhan Doddapaneni; Amanda Dolan; Shannon Dugan; Markus Friedrich; Giuliano Gasperi; Scott M. Geib; Georgios Georgakilas; Richard A. Gibbs; Sarah D. Giers; Ludvik M. Gomulski; Miguel González-Guzmán; Ana Guillem-Amat; Yi Han; Artemis G. Hatzigeorgiou; Pedro Hernández-Crespo; Daniel S.T. Hughes; Jeffery W. Jones; Dimitra Karagkouni

The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control. The 479 Mb medfly genome is sequenced from adult flies from lines inbred for 20 generations. A high-quality assembly is achieved having a contig N50 of 45.7 kb and scaffold N50 of 4.06 Mb. In-depth curation of more than 1800 messenger RNAs shows specific gene expansions that can be related to invasiveness and host adaptation, including gene families for chemoreception, toxin and insecticide metabolism, cuticle proteins, opsins, and aquaporins. We identify genes relevant to IPM control, including those required to improve SIT. The medfly genome sequence provides critical insights into the biology of one of the most serious and widespread agricultural pests. This knowledge should significantly advance the means of controlling the size and invasive potential of medfly populations. Its close relationship to Drosophila, and other insect species important to agriculture and human health, will further comparative functional and structural studies of insect genomes that should broaden our understanding of gene family evolution.


Nature Communications | 2015

Lucilia cuprina genome unlocks parasitic fly biology to underpin future interventions

Clare A. Anstead; Pasi K. Korhonen; Neil D. Young; Ross S. Hall; Aaron R. Jex; Shwetha C. Murali; Daniel S.T. Hughes; Siu F. Lee; Trent Perry; Andreas J. Stroehlein; Brendan R. E. Ansell; Bert Breugelmans; Andreas Hofmann; Jiaxin Qu; Shannon Dugan; Sandra L. Lee; Hsu Chao; Huyen Dinh; Yi Han; Harsha Doddapaneni; Kim C. Worley; Donna M. Muzny; Panagiotis Ioannidis; Robert M. Waterhouse; Evgeny M. Zdobnov; P. J. James; Neil H. Bagnall; Andrew C. Kotze; Richard A. Gibbs; Stephen Richards

Lucilia cuprina is a parasitic fly of major economic importance worldwide. Larvae of this fly invade their animal host, feed on tissues and excretions and progressively cause severe skin disease (myiasis). Here we report the sequence and annotation of the 458-megabase draft genome of Lucilia cuprina. Analyses of this genome and the 14,544 predicted protein-encoding genes provide unique insights into the flys molecular biology, interactions with the host animal and insecticide resistance. These insights have broad implications for designing new methods for the prevention and control of myiasis.


Molecular Biology and Evolution | 2017

Evolutionary History of Chemosensory-Related Gene Families across the Arthropoda

Seong-il Eyun; Ho Young Soh; Marijan Posavi; James B. Munro; Daniel S.T. Hughes; Shwetha C. Murali; Jiaxin Qu; Shannon Dugan; Sandra L. Lee; Hsu Chao; Huyen Dinh; Yi Han; HarshaVardhan Doddapaneni; Kim C. Worley; Donna M. Muzny; Eun-Ok Park; Joana C. Silva; Richard A. Gibbs; Stephen Richards; Carol Eunmi Lee

Abstract Chemosensory-related gene (CRG) families have been studied extensively in insects, but their evolutionary history across the Arthropoda had remained relatively unexplored. Here, we address current hypotheses and prior conclusions on CRG family evolution using a more comprehensive data set. In particular, odorant receptors were hypothesized to have proliferated during terrestrial colonization by insects (hexapods), but their association with other pancrustacean clades and with independent terrestrial colonizations in other arthropod subphyla have been unclear. We also examine hypotheses on which arthropod CRG family is most ancient. Thus, we reconstructed phylogenies of CRGs, including those from new arthropod genomes and transcriptomes, and mapped CRG gains and losses across arthropod lineages. Our analysis was strengthened by including crustaceans, especially copepods, which reside outside the hexapod/branchiopod clade within the subphylum Pancrustacea. We generated the first high-resolution genome sequence of the copepod Eurytemora affinis and annotated its CRGs. We found odorant receptors and odorant binding proteins present only in hexapods (insects) and absent from all other arthropod lineages, indicating that they are not universal adaptations to land. Gustatory receptors likely represent the oldest chemosensory receptors among CRGs, dating back to the Placozoa. We also clarified and confirmed the evolutionary history of antennal ionotropic receptors across the Arthropoda. All antennal ionotropic receptors in E. affinis were expressed more highly in males than in females, suggestive of an association with male mate-recognition behavior. This study is the most comprehensive comparative analysis to date of CRG family evolution across the largest and most speciose metazoan phylum Arthropoda.


Nature Ecology and Evolution | 2018

Hemimetabolous genomes reveal molecular basis of termite eusociality

Mark C. Harrison; Evelien Jongepier; Hugh M. Robertson; Nicolas Arning; Tristan Bitard-Feildel; Hsu Chao; Christopher P. Childers; Huyen Dinh; HarshaVardhan Doddapaneni; Shannon Dugan; Johannes Gowin; Carolin Greiner; Yi Han; Haofu Hu; Daniel S.T. Hughes; Ann Kathrin Huylmans; Carsten Kemena; Lukas P.M. Kremer; Sandra L. Lee; Alberto Lopez-Ezquerra; Ludovic Mallet; Jose M. Monroy-Kuhn; Annabell Moser; Shwetha C. Murali; Donna M. Muzny; Saria Otani; Maria Dolors Piulachs; Monica Poelchau; Jiaxin Qu; Florentine Schaub

Around 150 million years ago, eusocial termites evolved from within the cockroaches, 50 million years before eusocial Hymenoptera, such as bees and ants, appeared. Here, we report the 2-Gb genome of the German cockroach, Blattella germanica, and the 1.3-Gb genome of the drywood termite Cryptotermes secundus. We show evolutionary signatures of termite eusociality by comparing the genomes and transcriptomes of three termites and the cockroach against the background of 16 other eusocial and non-eusocial insects. Dramatic adaptive changes in genes underlying the production and perception of pheromones confirm the importance of chemical communication in the termites. These are accompanied by major changes in gene regulation and the molecular evolution of caste determination. Many of these results parallel molecular mechanisms of eusocial evolution in Hymenoptera. However, the specific solutions are remarkably different, thus revealing a striking case of convergence in one of the major evolutionary transitions in biological complexity.Eusociality evolved independently in Hymenoptera and in termites. Here, the authors sequence genomes of the German cockroach and a drywood termite and provide insights into the evolutionary signatures of termite eusociality.


G3: Genes, Genomes, Genetics | 2014

Evidence for Stabilizing Selection on Codon Usage in Chromosomal Rearrangements of Drosophila pseudoobscura

Zachary L. Fuller; Gwilym D. Haynes; Dianhui Zhu; Matthew Batterton; Hsu Chao; Shannon Dugan; Mehwish Javaid; Joy Jayaseelan; Sandra L. Lee; Mingmei Li; Fiona Ongeri; Sulan Qi; Yi Han; HarshaVardhan Doddapaneni; Stephen Richards; Stephen W. Schaeffer

There has been a renewed interest in investigating the role of stabilizing selection acting on genome-wide traits such as codon usage bias. Codon bias, when synonymous codons are used at unequal frequencies, occurs in a wide variety of taxa. Standard evolutionary models explain the maintenance of codon bias through a balance of genetic drift, mutation and weak purifying selection. The efficacy of selection is expected to be reduced in regions of suppressed recombination. Contrary to observations in Drosophila melanogaster, some recent studies have failed to detect a relationship between the recombination rate, intensity of selection acting at synonymous sites, and the magnitude of codon bias as predicted under these standard models. Here, we examined codon bias in 2798 protein coding loci on the third chromosome of D. pseudoobscura using whole-genome sequences of 47 individuals, representing five common third chromosome gene arrangements. Fine-scale recombination maps were constructed using more than 1 million segregating sites. As expected, recombination was demonstrated to be significantly suppressed between chromosome arrangements, allowing for a direct examination of the relationship between recombination, selection, and codon bias. As with other Drosophila species, we observe a strong mutational bias away from the most frequently used codons. We find the rate of synonymous and nonsynonymous polymorphism is variable between different amino acids. However, we do not observe a reduction in codon bias or the strength of selection in regions of suppressed recombination as expected. Instead, we find that the interaction between weak stabilizing selection and mutational bias likely plays a role in shaping the composition of synonymous codons across the third chromosome in D. pseudoobscura.

Collaboration


Dive into the Hsu Chao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shannon Dugan

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huyen Dinh

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yi Han

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Shwetha C. Murali

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Donna M. Muzny

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard A. Gibbs

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Sandra L. Lee

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge