Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra L. Lee is active.

Publication


Featured researches published by Sandra L. Lee.


Nature | 2012

The Drosophila melanogaster Genetic Reference Panel

Trudy F. C. Mackay; Stephen Richards; Eric A. Stone; Antonio Barbadilla; Julien F. Ayroles; Dianhui Zhu; Sònia Casillas; Yi Han; Michael M. Magwire; Julie M. Cridland; Mark F. Richardson; Robert R. H. Anholt; Maite Barrón; Crystal Bess; Kerstin P. Blankenburg; Mary Anna Carbone; David Castellano; Lesley S. Chaboub; Laura H. Duncan; Zeke Harris; Mehwish Javaid; Joy Jayaseelan; Shalini N. Jhangiani; Katherine W. Jordan; Fremiet Lara; Faye Lawrence; Sandra L. Lee; Pablo Librado; Raquel S. Linheiro; Richard F. Lyman

A major challenge of biology is understanding the relationship between molecular genetic variation and variation in quantitative traits, including fitness. This relationship determines our ability to predict phenotypes from genotypes and to understand how evolutionary forces shape variation within and between species. Previous efforts to dissect the genotype–phenotype map were based on incomplete genotypic information. Here, we describe the Drosophila melanogaster Genetic Reference Panel (DGRP), a community resource for analysis of population genomics and quantitative traits. The DGRP consists of fully sequenced inbred lines derived from a natural population. Population genomic analyses reveal reduced polymorphism in centromeric autosomal regions and the X chromosome, evidence for positive and negative selection, and rapid evolution of the X chromosome. Many variants in novel genes, most at low frequency, are associated with quantitative traits and explain a large fraction of the phenotypic variance. The DGRP facilitates genotype–phenotype mapping using the power of Drosophila genetics.


BMC Microbiology | 2007

Subtle genetic changes enhance virulence of methicillin resistant and sensitive Staphylococcus aureus

Sarah K. Highlander; Kristina G. Hulten; Xiang Qin; Huaiyang Jiang; Shailaja Yerrapragada; Edward O. Mason; Yue Shang; Tiffany M. Williams; Régine M Fortunov; Yamei Liu; Okezie Igboeli; Joseph F. Petrosino; Madhan R. Tirumalai; Akif Uzman; George E. Fox; Ana Maria Cardenas; Donna M. Muzny; Lisa Hemphill; Yan Ding; Shannon Dugan; Peter R Blyth; Christian Buhay; Huyen Dinh; Alicia Hawes; Michael Holder; Christie Kovar; Sandra L. Lee; Wen Liu; Lynne V. Nazareth; Qiaoyan Wang

BackgroundCommunity acquired (CA) methicillin-resistant Staphylococcus aureus (MRSA) increasingly causes disease worldwide. USA300 has emerged as the predominant clone causing superficial and invasive infections in children and adults in the USA. Epidemiological studies suggest that USA300 is more virulent than other CA-MRSA. The genetic determinants that render virulence and dominance to USA300 remain unclear.ResultsWe sequenced the genomes of two pediatric USA300 isolates: one CA-MRSA and one CA-methicillin susceptible (MSSA), isolated at Texas Childrens Hospital in Houston. DNA sequencing was performed by Sanger dideoxy whole genome shotgun (WGS) and 454 Life Sciences pyrosequencing strategies. The sequence of the USA300 MRSA strain was rigorously annotated. In USA300-MRSA 2658 chromosomal open reading frames were predicted and 3.1 and 27 kilobase (kb) plasmids were identified. USA300-MSSA contained a 20 kb plasmid with some homology to the 27 kb plasmid found in USA300-MRSA. Two regions found in US300-MRSA were absent in USA300-MSSA. One of these carried the arginine deiminase operon that appears to have been acquired from S. epidermidis. The USA300 sequence was aligned with other sequenced S. aureus genomes and regions unique to USA300 MRSA were identified.ConclusionUSA300-MRSA is highly similar to other MRSA strains based on whole genome alignments and gene content, indicating that the differences in pathogenesis are due to subtle changes rather than to large-scale acquisition of virulence factor genes. The USA300 Houston isolate differs from another sequenced USA300 strain isolate, derived from a patient in San Francisco, in plasmid content and a number of sequence polymorphisms. Such differences will provide new insights into the evolution of pathogens.


Science | 2014

The sheep genome illuminates biology of the rumen and lipid metabolism

Yu Jiang; Min Xie; Wenbin Chen; Richard Talbot; J. F. Maddox; Thomas Faraut; Chunhua Wu; Donna M. Muzny; Yuxiang Li; Wenguang Zhang; Jo-Ann L. Stanton; Rudiger Brauning; Wesley C. Barris; Thibaut Hourlier; Bronwen Aken; Stephen M. J. Searle; David L. Adelson; Chao Bian; Graham R. Cam; Yulin Chen; Shifeng Cheng; Udaya DeSilva; Karen Dixen; Yang Dong; Guangyi Fan; Ian R. Franklin; Shaoyin Fu; Pablo Fuentes-Utrilla; Rui Guan; Margaret A. Highland

A genome for ewe and ewe Sheep-specific genetic changes underlie differences in lipid metabolism between sheep and other mammals, and may have contributed to the production of wool. Jiang et al. sequenced the genome of two Texel sheep, a breed that produces high-value meat, milk, and wool. The genome information will provide an important resource for livestock production and aid in the understanding of mammalian evolution. Science, this issue p. 1168 A genomic analysis of sheep explains specializations in digestive system physiology and wool production. Sheep (Ovis aries) are a major source of meat, milk, and fiber in the form of wool and represent a distinct class of animals that have a specialized digestive organ, the rumen, that carries out the initial digestion of plant material. We have developed and analyzed a high-quality reference sheep genome and transcriptomes from 40 different tissues. We identified highly expressed genes encoding keratin cross-linking proteins associated with rumen evolution. We also identified genes involved in lipid metabolism that had been amplified and/or had altered tissue expression patterns. This may be in response to changes in the barrier lipids of the skin, an interaction between lipid metabolism and wool synthesis, and an increased role of volatile fatty acids in ruminants compared with nonruminant animals.


Nature | 2014

Gibbon genome and the fast karyotype evolution of small apes.

Lucia Carbone; R. Alan Harris; Sante Gnerre; Krishna R. Veeramah; Belen Lorente-Galdos; John Huddleston; Thomas J. Meyer; Javier Herrero; Christian Roos; Bronwen Aken; Fabio Anaclerio; Nicoletta Archidiacono; Carl Baker; Daniel Barrell; Mark A. Batzer; Kathryn Beal; Antoine Blancher; Craig Bohrson; Markus Brameier; Michael S. Campbell; Claudio Casola; Giorgia Chiatante; Andrew Cree; Annette Damert; Pieter J. de Jong; Laura Dumas; Marcos Fernandez-Callejo; Paul Flicek; Nina V. Fuchs; Ivo Gut

Gibbons are small arboreal apes that display an accelerated rate of evolutionary chromosomal rearrangement and occupy a key node in the primate phylogeny between Old World monkeys and great apes. Here we present the assembly and analysis of a northern white-cheeked gibbon (Nomascus leucogenys) genome. We describe the propensity for a gibbon-specific retrotransposon (LAVA) to insert into chromosome segregation genes and alter transcription by providing a premature termination site, suggesting a possible molecular mechanism for the genome plasticity of the gibbon lineage. We further show that the gibbon genera (Nomascus, Hylobates, Hoolock and Symphalangus) experienced a near-instantaneous radiation ∼5 million years ago, coincident with major geographical changes in southeast Asia that caused cycles of habitat compression and expansion. Finally, we identify signatures of positive selection in genes important for forelimb development (TBX5) and connective tissues (COL1A1) that may have been involved in the adaptation of gibbons to their arboreal habitat.


Nature Genetics | 2015

Convergent evolution of the genomes of marine mammals

Andrew D. Foote; Yue Liu; Gregg W.C. Thomas; Tomáš Vinař; Jessica Alföldi; Jixin Deng; Shannon Dugan; Cornelis E van Elk; Margaret E Hunter; Vandita Joshi; Ziad Khan; Christie Kovar; Sandra L. Lee; Kerstin Lindblad-Toh; Annalaura Mancia; Rasmus Nielsen; Xiang Qin; Jiaxin Qu; Brian J. Raney; Nagarjun Vijay; Jochen B. W. Wolf; Matthew W. Hahn; Donna M. Muzny; Kim C. Worley; M. Thomas P. Gilbert; Richard A. Gibbs

Marine mammals from different mammalian orders share several phenotypic traits adapted to the aquatic environment and therefore represent a classic example of convergent evolution. To investigate convergent evolution at the genomic level, we sequenced and performed de novo assembly of the genomes of three species of marine mammals (the killer whale, walrus and manatee) from three mammalian orders that share independently evolved phenotypic adaptations to a marine existence. Our comparative genomic analyses found that convergent amino acid substitutions were widespread throughout the genome and that a subset of these substitutions were in genes evolving under positive selection and putatively associated with a marine phenotype. However, we found higher levels of convergent amino acid substitutions in a control set of terrestrial sister taxa to the marine mammals. Our results suggest that, whereas convergent molecular evolution is relatively common, adaptive molecular convergence linked to phenotypic convergence is comparatively rare.


PLOS ONE | 2007

Paradoxical DNA Repair and Peroxide Resistance Gene Conservation in Bacillus pumilus SAFR-032

Jason Gioia; Shailaja Yerrapragada; Xiang Qin; Huaiyang Jiang; Okezie Igboeli; Donna M. Muzny; Shannon Dugan-Rocha; Yan Ding; Alicia Hawes; Wen Liu; Lesette Perez; Christie Kovar; Huyen Dinh; Sandra L. Lee; Lynne V. Nazareth; Peter R Blyth; Michael Holder; Christian Buhay; Madhan R. Tirumalai; Yamei Liu; Indrani Dasgupta; Lina Bokhetache; Masaya Fujita; Fathi Karouia; Prahathees Eswara Moorthy; Johnathan Siefert; Akif Uzman; Prince Buzumbo; Avani Verma; Hiba Zwiya

Background Bacillus spores are notoriously resistant to unfavorable conditions such as UV radiation, γ-radiation, H2O2, desiccation, chemical disinfection, or starvation. Bacillus pumilus SAFR-032 survives standard decontamination procedures of the Jet Propulsion Lab spacecraft assembly facility, and both spores and vegetative cells of this strain exhibit elevated resistance to UV radiation and H2O2 compared to other Bacillus species. Principal Findings The genome of B. pumilus SAFR-032 was sequenced and annotated. Lists of genes relevant to DNA repair and the oxidative stress response were generated and compared to B. subtilis and B. licheniformis. Differences in conservation of genes, gene order, and protein sequences are highlighted because they potentially explain the extreme resistance phenotype of B. pumilus. The B. pumilus genome includes genes not found in B. subtilis or B. licheniformis and conserved genes with sequence divergence, but paradoxically lacks several genes that function in UV or H2O2 resistance in other Bacillus species. Significance This study identifies several candidate genes for further research into UV and H2O2 resistance. These findings will help explain the resistance of B. pumilus and are applicable to understanding sterilization survival strategies of microbes.


Nature | 2015

Hemichordate genomes and deuterostome origins

Oleg Simakov; Takeshi Kawashima; Ferdinand Marlétaz; Jerry Jenkins; Ryo Koyanagi; Therese Mitros; Kanako Hisata; Jessen Bredeson; Eiichi Shoguchi; Fuki Gyoja; Jia-Xing Yue; Yi-Chih Chen; Robert M. Freeman; Akane Sasaki; Tomoe Hikosaka-Katayama; Atsuko Sato; Manabu Fujie; Kenneth W. Baughman; Judith Levine; Paul Gonzalez; Christopher B. Cameron; Jens H. Fritzenwanker; Ariel M. Pani; Hiroki Goto; Miyuki Kanda; Nana Arakaki; Shinichi Yamasaki; Jiaxin Qu; Andrew Cree; Yan Ding

Acorn worms, also known as enteropneust (literally, ‘gut-breathing’) hemichordates, are marine invertebrates that share features with echinoderms and chordates. Together, these three phyla comprise the deuterostomes. Here we report the draft genome sequences of two acorn worms, Saccoglossus kowalevskii and Ptychodera flava. By comparing them with diverse bilaterian genomes, we identify shared traits that were probably inherited from the last common deuterostome ancestor, and then explore evolutionary trajectories leading from this ancestor to hemichordates, echinoderms and chordates. The hemichordate genomes exhibit extensive conserved synteny with amphioxus and other bilaterians, and deeply conserved non-coding sequences that are candidates for conserved gene-regulatory elements. Notably, hemichordates possess a deuterostome-specific genomic cluster of four ordered transcription factor genes, the expression of which is associated with the development of pharyngeal ‘gill’ slits, the foremost morphological innovation of early deuterostomes, and is probably central to their filter-feeding lifestyle. Comparative analysis reveals numerous deuterostome-specific gene novelties, including genes found in deuterostomes and marine microbes, but not other animals. The putative functions of these genes can be linked to physiological, metabolic and developmental specializations of the filter-feeding ancestor.


Genome Research | 2014

Comparative validation of the D. melanogaster modENCODE transcriptome annotation

Zhen Xia Chen; David Sturgill; Jiaxin Qu; Huaiyang Jiang; Soo Park; Nathan Boley; Ana Maria Suzuki; Anthony R. Fletcher; David C. Plachetzki; Peter C. FitzGerald; Carlo G. Artieri; Joel Atallah; Olga Barmina; James B. Brown; Kerstin P. Blankenburg; Emily Clough; Abhijit Dasgupta; Sai Gubbala; Yi Han; Joy Jayaseelan; Divya Kalra; Yoo-Ah Kim; Christie Kovar; Sandra L. Lee; Mingmei Li; James D. Malley; John H. Malone; Tittu Mathew; Nicolas R Mattiuzzo; Mala Munidasa

Accurate gene model annotation of reference genomes is critical for making them useful. The modENCODE project has improved the D. melanogaster genome annotation by using deep and diverse high-throughput data. Since transcriptional activity that has been evolutionarily conserved is likely to have an advantageous function, we have performed large-scale interspecific comparisons to increase confidence in predicted annotations. To support comparative genomics, we filled in divergence gaps in the Drosophila phylogeny by generating draft genomes for eight new species. For comparative transcriptome analysis, we generated mRNA expression profiles on 81 samples from multiple tissues and developmental stages of 15 Drosophila species, and we performed cap analysis of gene expression in D. melanogaster and D. pseudoobscura. We also describe conservation of four distinct core promoter structures composed of combinations of elements at three positions. Overall, each type of genomic feature shows a characteristic divergence rate relative to neutral models, highlighting the value of multispecies alignment in annotating a target genome that should prove useful in the annotation of other high priority genomes, especially human and other mammalian genomes that are rich in noncoding sequences. We report that the vast majority of elements in the annotation are evolutionarily conserved, indicating that the annotation will be an important springboard for functional genetic testing by the Drosophila community.


Nature Communications | 2016

Unique features of a global human ectoparasite identified through sequencing of the bed bug genome

Joshua B. Benoit; Zach N. Adelman; Klaus Reinhardt; Amanda Dolan; Monica Poelchau; Emily C. Jennings; Elise M. Szuter; Richard W. Hagan; Hemant Gujar; Jayendra Nath Shukla; Fang Zhu; M. Mohan; David R. Nelson; Andrew J. Rosendale; Christian Derst; Valentina Resnik; Sebastian Wernig; Pamela Menegazzi; Christian Wegener; Nicolai Peschel; Jacob M. Hendershot; Wolfgang Blenau; Reinhard Predel; Paul R. Johnston; Panagiotis Ioannidis; Robert M. Waterhouse; Ralf Nauen; Corinna Schorn; Mark Christoph Ott; Frank Maiwald

The bed bug, Cimex lectularius, has re-established itself as a ubiquitous human ectoparasite throughout much of the world during the past two decades. This global resurgence is likely linked to increased international travel and commerce in addition to widespread insecticide resistance. Analyses of the C. lectularius sequenced genome (650 Mb) and 14,220 predicted protein-coding genes provide a comprehensive representation of genes that are linked to traumatic insemination, a reduced chemosensory repertoire of genes related to obligate hematophagy, host–symbiont interactions, and several mechanisms of insecticide resistance. In addition, we document the presence of multiple putative lateral gene transfer events. Genome sequencing and annotation establish a solid foundation for future research on mechanisms of insecticide resistance, human–bed bug and symbiont–bed bug associations, and unique features of bed bug biology that contribute to the unprecedented success of C. lectularius as a human ectoparasite.


Genome Biology | 2016

Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface

Duane D. McKenna; Erin D. Scully; Yannick Pauchet; Kelli Hoover; Roy Kirsch; Scott M. Geib; Robert F. Mitchell; Robert M. Waterhouse; Seung Joon Ahn; Deanna Arsala; Joshua B. Benoit; Heath Blackmon; Tiffany Bledsoe; Julia H. Bowsher; André Busch; Bernarda Calla; Hsu Chao; Anna K. Childers; Christopher Childers; Dave J. Clarke; Lorna Cohen; Jeffery P. Demuth; Huyen Dinh; HarshaVardhan Doddapaneni; Amanda Dolan; Jian J. Duan; Shannon Dugan; Markus Friedrich; Karl M. Glastad; Michael A. D. Goodisman

BackgroundRelatively little is known about the genomic basis and evolution of wood-feeding in beetles. We undertook genome sequencing and annotation, gene expression assays, studies of plant cell wall degrading enzymes, and other functional and comparative studies of the Asian longhorned beetle, Anoplophora glabripennis, a globally significant invasive species capable of inflicting severe feeding damage on many important tree species. Complementary studies of genes encoding enzymes involved in digestion of woody plant tissues or detoxification of plant allelochemicals were undertaken with the genomes of 14 additional insects, including the newly sequenced emerald ash borer and bull-headed dung beetle.ResultsThe Asian longhorned beetle genome encodes a uniquely diverse arsenal of enzymes that can degrade the main polysaccharide networks in plant cell walls, detoxify plant allelochemicals, and otherwise facilitate feeding on woody plants. It has the metabolic plasticity needed to feed on diverse plant species, contributing to its highly invasive nature. Large expansions of chemosensory genes involved in the reception of pheromones and plant kairomones are consistent with the complexity of chemical cues it uses to find host plants and mates.ConclusionsAmplification and functional divergence of genes associated with specialized feeding on plants, including genes originally obtained via horizontal gene transfer from fungi and bacteria, contributed to the addition, expansion, and enhancement of the metabolic repertoire of the Asian longhorned beetle, certain other phytophagous beetles, and to a lesser degree, other phytophagous insects. Our results thus begin to establish a genomic basis for the evolutionary success of beetles on plants.

Collaboration


Dive into the Sandra L. Lee's collaboration.

Top Co-Authors

Avatar

Huyen Dinh

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Shannon Dugan

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yi Han

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Hsu Chao

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donna M. Muzny

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jiaxin Qu

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Shwetha C. Murali

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Richard A. Gibbs

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge