Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Htet A. Khant is active.

Publication


Featured researches published by Htet A. Khant.


Nature Structural & Molecular Biology | 2006

Close membrane-membrane proximity induced by Ca2+-dependent multivalent binding of synaptotagmin-1 to phospholipids

Demet Araç; Xiaocheng Chen; Htet A. Khant; Josep Ubach; Steven J. Ludtke; Masahide Kikkawa; Arthur E. Johnson; Wah Chiu; Thomas C. Südhof; Josep Rizo

Synaptotagmin acts as a Ca2+ sensor in neurotransmitter release through its two C2 domains. Ca2+-dependent phospholipid binding is key for synaptotagmin function, but it is unclear how this activity cooperates with the SNARE complex involved in release or why Ca2+ binding to the C2B domain is more crucial for release than Ca2+ binding to the C2A domain. Here we show that Ca2+ induces high-affinity simultaneous binding of synaptotagmin to two membranes, bringing them into close proximity. The synaptotagmin C2B domain is sufficient for this ability, which arises from the abundance of basic residues around its surface. We propose a model wherein synaptotagmin cooperates with the SNAREs in bringing the synaptic vesicle and plasma membranes together and accelerates membrane fusion through the highly positive electrostatic potential of its C2B domain.


Chemical Communications | 2005

Superparamagnetic gadonanotubes are high-performance MRI contrast agents

Balaji Sitharaman; Kyle Kissell; Keith B. Hartman; Lesa A. Tran; Andrei Baikalov; Irene Rusakova; Yanyi Sun; Htet A. Khant; Steven J. Ludtke; Wah Chiu; Sabrina Laus; Éva Tóth; Lothar Helm; Andre E. Merbach; Lon J. Wilson

We report the nanoscale loading and confinement of aquated Gd3+n-ion clusters within ultra-short single-walled carbon nanotubes (US-tubes); these Gd3+n@US-tube species are linear superparamagnetic molecular magnets with Magnetic Resonance Imaging (MRI) efficacies 40 to 90 times larger than any Gd3+-based contrast agent (CA) in current clinical use.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Interprotofilament interactions between Alzheimer's Aβ1–42 peptides in amyloid fibrils revealed by cryoEM

Rui Zhang; Xiaoyan Hu; Htet A. Khant; Steven J. Ludtke; Wah Chiu; Michael Schmid; Carl Frieden; Jin-Moo Lee

Alzheimers disease is a neurodegenerative disorder characterized by the accumulation of amyloid plaques in the brain. This amyloid primarily contains amyloid-β (Aβ), a 39- to 43-aa peptide derived from the proteolytic cleavage of the endogenous amyloid precursor protein. The 42-residue-length Aβ peptide (Aβ1–42), the most abundant Aβ peptide found in plaques, has a much greater propensity to self-aggregate into fibrils than the other peptides and is believed to be more pathogenic. Synthetic human Aβ1–42 peptides self-aggregate into stable but poorly-ordered helical filaments. We determined their structure to ≈10-Å resolution by using cryoEM and the iterative real-space reconstruction method. This structure reveals 2 protofilaments winding around a hollow core. Previous hairpin-like NMR models for Aβ17–42 fit well in the cryoEM density map and reveal that the juxtaposed protofilaments are joined via the N terminus of the peptide from 1 protofilament connecting to the loop region of the peptide in the opposite protofilament. This model of mature Aβ1–42 fibrils is markedly different from previous cryoEM models of Aβ1–40 fibrils. In our model, the C terminus of Aβ forms the inside wall of the hollow core, which is supported by partial proteolysis analysis.


Nature | 2013

Visualizing virus assembly intermediates inside marine cyanobacteria

Wei Dai; Caroline J. Fu; Desislava Raytcheva; John G. Flanagan; Htet A. Khant; Xiangan Liu; Ryan H. Rochat; Cameron Haase-Pettingell; Jacqueline Piret; S Ludtke; Kuniaki Nagayama; Michael F. Schmid; Jonathan King; Wah Chiu

Cyanobacteria are photosynthetic organisms responsible for ∼25% of organic carbon fixation on the Earth. These bacteria began to convert solar energy and carbon dioxide into bioenergy and oxygen more than two billion years ago. Cyanophages, which infect these bacteria, have an important role in regulating the marine ecosystem by controlling cyanobacteria community organization and mediating lateral gene transfer. Here we visualize the maturation process of cyanophage Syn5 inside its host cell, Synechococcus, using Zernike phase contrast electron cryo-tomography (cryoET). This imaging modality yields dramatic enhancement of image contrast over conventional cryoET and thus facilitates the direct identification of subcellular components, including thylakoid membranes, carboxysomes and polyribosomes, as well as phages, inside the congested cytosol of the infected cell. By correlating the structural features and relative abundance of viral progeny within cells at different stages of infection, we identify distinct Syn5 assembly intermediates. Our results indicate that the procapsid releases scaffolding proteins and expands its volume at an early stage of genome packaging. Later in the assembly process, we detected full particles with a tail either with or without an additional horn. The morphogenetic pathway we describe here is highly conserved and was probably established long before that of double-stranded DNA viruses infecting more complex organisms.


Structure | 2009

Structural mechanism of SDS-induced enzyme activity of scorpion hemocyanin revealed by electron cryomicroscopy.

Yao Cong; Qinfen Zhang; David Woolford; Thorsten Schweikardt; Htet A. Khant; Matthew Dougherty; Steven J. Ludtke; Wah Chiu; Heinz Decker

Phenoloxidases (POs) occur in all organisms and are involved in skin and hair coloring in mammals, and initiating melanization in wound healing. Mutation or overexpression of PO can cause albinism or melanoma, respectively. SDS can convert inactive PO and the oxygen carrier hemocyanin (Hc) into enzymatically active PO. Here we present single-particle cryo-EM maps at subnanometer resolution and pseudoatomic models of the 24-oligomeric Hc from scorpion Pandinus imperator in resting and SDS-activated states. Our structural analyses led to a plausible mechanism of Hc enzyme PO activation: upon SDS activation, the intrinsically flexible Hc domain I twists away from domains II and III in each subunit, exposing the entrance to the active site; this movement is stabilized by enhanced interhexamer and interdodecamer interactions, particularly in the central linker subunits. This mechanism could be applicable to other type 3 copper proteins, as the active site is highly conserved.


Biochemistry | 2009

Mechanisms of peptide amphiphile internalization by SJSA-1 cells in vitro.

Dimitris Missirlis; Htet A. Khant; Matthew Tirrell

Self-assembly of peptide amphiphiles into nanostructures makes them attractive for a variety of applications in drug and peptide delivery. We here report on the interactions of micelles composed of a palmitoylated, pro-apoptotic peptide derived from p53 tumor suppressor protein with a human cancer cell line. Characterization of self-assembly in aqueous buffered solutions revealed formation of elongated rod-like micelles above a critical micelle concentration. Our results however demonstrate that monomers instead of micelles are internalized, a finding that correlates with the dynamic nature of the assemblies and the noncovalent interactions that hold them together. Internalization is shown to occur via adsorption-mediated, energy-dependent pathways, resulting in accumulation of the material in endocytic vesicles. We conclude that palmitoylation of peptides is an efficient way to increase peptide permeability inside SJSA-1 cells and that increased micelle stability would be required for intact micelle internalization.


Nanotechnology | 2011

Partially polymerized liposomes: stable against leakage yet capable of instantaneous release for remote controlled drug delivery

Guoting Qin; Zheng Li; Rongmin Xia; Feng Li; Brian E. O'Neill; Jessica T. Goodwin; Htet A. Khant; Wah Chiu; King C. Li

A critical issue for current liposomal carriers in clinical applications is their leakage of the encapsulated drugs that are cytotoxic to non-target tissues. We have developed partially polymerized liposomes composed of polydiacetylene lipids and saturated lipids. Cross-linking of the diacetylene lipids prevents the drug leakage even at 40 °C for days. These inactivated drug carriers are non-cytotoxic. Significantly, more than 70% of the encapsulated drug can be instantaneously released by a laser that matches the plasmon resonance of the tethered gold nanoparticles on the liposomes, and the therapeutic effect was observed in cancer cells. The remote activation feature of this novel drug delivery system allows for precise temporal and spatial control of drug release.


Langmuir | 2011

Effect of the Peptide Secondary Structure on the Peptide Amphiphile Supramolecular Structure and Interactions

Dimitris Missirlis; Arkadiusz Chworos; Caroline J. Fu; Htet A. Khant; Daniel V. Krogstad; Matthew Tirrell

Bottom-up fabrication of self-assembled nanomaterials requires control over forces and interactions between building blocks. We report here on the formation and architecture of supramolecular structures constructed from two different peptide amphiphiles. Inclusion of four alanines between a 16-mer peptide and a 16 carbon long aliphatic tail resulted in a secondary structure shift of the peptide headgroups from α helices to β sheets. A concomitant shift in self-assembled morphology from nanoribbons to core-shell worm-like micelles was observed by cryogenic transmission electron microscopy (cryo-TEM) and atomic force microscopy (AFM). In the presence of divalent magnesium ions, these a priori formed supramolecular structures interacted in distinct manners, highlighting the importance of peptide amphiphile design in self-assembly.


Molecular Pharmaceutics | 2012

Filamentous, mixed micelles of triblock copolymers enhance tumor localization of indocyanine green in a murine xenograft model

Tae Hee Kim; Christopher W. Mount; Benjamin W. Dulken; Jenelyn Ramos; Caroline J. Fu; Htet A. Khant; Wah Chiu; Wayne R. Gombotz; Suzie H. Pun

Polymeric micelles formed by the self-assembly of amphiphilic block copolymers can be used to encapsulate hydrophobic drugs for tumor-delivery applications. Filamentous carriers with high aspect ratios offer potential advantages over spherical carriers, including prolonged circulation times. In this work, mixed micelles composed of poly(ethylene oxide)-poly[(R)-3-hydroxybutyrate]-poly(ethylene oxide) (PEO-PHB-PEO) and Pluronic F-127 (PF-127) were used to encapsulate a near-infrared fluorophore. The micelle formulations were assessed for tumor accumulation after tail vein injection to xenograft tumor-bearing mice by noninvasive optical imaging. The mixed micelle formulation that facilitated the highest tumor accumulation was shown by cryo-electron microscopy to be filamentous in structure compared to spherical structures of pure PF-127 micelles. In addition, increased dye loading efficiency and dye stability were attained in this mixed micelle formulation compared to pure PEO-PHB-PEO micelles. Therefore, the optimized PEO-PHB-PEO/PF-127 mixed micelle formulation offers advantages for cancer delivery over micelles formed from the individual copolymer components.


Methods in Enzymology | 2009

Chapter 14 - Synthesis, characterization, and optical response of gold nanoshells used to trigger release from liposomes.

Guohui Wu; Alexander Mikhailovsky; Htet A. Khant; Joseph A. Zasadzinski

Liposomes show great promise as intravenous drug delivery vehicles, but it is often difficult to combine stability in the circulation with rapid, targeted release at the site of interest. Targeting to specific tissues requires developing highly specific ligands with strong affinities to receptors overexpressed on diseased cells; a new cellular target requires developing new ligands and identifying new receptors. Novel photoactivated, hollow, gold nanoshell (HGN)/liposome composites provide a new approach to both controlled release and specific targeting. HGN are extremely efficient near infrared (NIR) light absorbers, and are not susceptible to photobleaching like conventional dyes. Near-complete liposome contents release can be initiated within seconds by irradiating HGNs with an NIR pulsed laser. Targeting the drug is limited only by the dimensions of the laser beam; no specific ligands or antibodies are required, so different tissues and cells can be targeted with the same HGN/liposomes. HGNs can be encapsulated within liposomes or tethered to the outer surface of liposomes for the most efficient drug release. HGNs in liposome solutions can also trigger release, but with lower efficiency. Drug release is induced by adsorbing femto- to nanosecond NIR light pulses that cause the HGNs to rapidly increase in temperature. The resulting large temperature gradients lead to the formation of vapor microbubbles in aqueous solutions, similar to the cavitation bubbles induced by sonication. The collapse of the unstable vapor bubbles causes liposome-membrane rupture and contents release, with minimal damage to the surroundings, and little overall heating of the solution.

Collaboration


Dive into the Htet A. Khant's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caroline J. Fu

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Steven J. Ludtke

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Michael F. Schmid

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Guohui Wu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mikyung Han

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

S Ludtke

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Xiangan Liu

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Alexey Y. Koyfman

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge