Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wah Chiu is active.

Publication


Featured researches published by Wah Chiu.


The New England Journal of Medicine | 2012

Paraneoplastic Thrombocytosis in Ovarian Cancer

Rebecca L. Stone; Alpa M. Nick; Iain A. McNeish; Frances R. Balkwill; Hee Dong Han; Justin Bottsford-Miller; Rajesha Rupaimoole; Guillermo N. Armaiz-Pena; Chad V. Pecot; Jermaine Coward; Michael T. Deavers; Hernan Vasquez; Diana L. Urbauer; Charles N. Landen; Wei Hu; Hannah Gershenson; Koji Matsuo; Mian M.K. Shahzad; Erin R. King; Ibrahim Tekedereli; Bulent Ozpolat; Edward H. Ahn; Virginia K. Bond; Rui Wang; Angela F. Drew; Francisca C. Gushiken; Donald M. Lamkin; Katherine Collins; Koen DeGeest; Susan K. Lutgendorf

BACKGROUND The mechanisms of paraneoplastic thrombocytosis in ovarian cancer and the role that platelets play in abetting cancer growth are unclear. METHODS We analyzed clinical data on 619 patients with epithelial ovarian cancer to test associations between platelet counts and disease outcome. Human samples and mouse models of epithelial ovarian cancer were used to explore the underlying mechanisms of paraneoplastic thrombocytosis. The effects of platelets on tumor growth and angiogenesis were ascertained. RESULTS Thrombocytosis was significantly associated with advanced disease and shortened survival. Plasma levels of thrombopoietin and interleukin-6 were significantly elevated in patients who had thrombocytosis as compared with those who did not. In mouse models, increased hepatic thrombopoietin synthesis in response to tumor-derived interleukin-6 was an underlying mechanism of paraneoplastic thrombocytosis. Tumor-derived interleukin-6 and hepatic thrombopoietin were also linked to thrombocytosis in patients. Silencing thrombopoietin and interleukin-6 abrogated thrombocytosis in tumor-bearing mice. Anti-interleukin-6 antibody treatment significantly reduced platelet counts in tumor-bearing mice and in patients with epithelial ovarian cancer. In addition, neutralizing interleukin-6 significantly enhanced the therapeutic efficacy of paclitaxel in mouse models of epithelial ovarian cancer. The use of an antiplatelet antibody to halve platelet counts in tumor-bearing mice significantly reduced tumor growth and angiogenesis. CONCLUSIONS These findings support the existence of a paracrine circuit wherein increased production of thrombopoietic cytokines in tumor and host tissue leads to paraneoplastic thrombocytosis, which fuels tumor growth. We speculate that countering paraneoplastic thrombocytosis either directly or indirectly by targeting these cytokines may have therapeutic potential. (Funded by the National Cancer Institute and others.).


Journal of Molecular Biology | 1988

Three-dimensional structure of rotavirus☆

B.V.Venkataram Prasad; G.J. Wang; John P.M. Clerx; Wah Chiu

The three-dimensional structures of double and single-shelled simian rotavirus have been determined to a resolution of 40 A by image processing electron micrographs of unstained, unfixed virus particles embedded in vitreous ice. This study demonstrates that the icosahedral surface lattices in these structures have a triangulation number of 13 in a left-handed configuration. The double-shelled virion has a smooth outer surface with 60 slender spikes. The single-shelled virion, in contrast, exhibits a bristly surface. On the basis of these structures, the locations and number of copies of outer and inner shell proteins have been deduced. The spikes likely correspond to VP3, a hemagglutinin, while the rest of the mass density in the outer shell represents 780 molecules of VP7, a neutralization antigen. The 260 morphological units, located on all the local and strict 3-fold axes of the single-shelled virion are proposed to represent 260 trimers of VP6, which is a subgroup antigen. The regions of closed contact between the outer and the inner shells are located mainly near the local and strict 3-fold axes. A distinctive feature in the rotavirus structure is the presence of 132 large channels spanning across both the shells at all 5 and 6-co-ordinated positions linking the outermost surface with the inner core. In the transcriptionally active single-shelled virion, these channels may provide pathways for importing the metabolites required for the viral RNA transcription and exporting the newly synthesized RNA molecules for subsequent viral replication processes.


Nature | 2006

Structure of epsilon15 bacteriophage reveals genome organization and DNA packaging/injection apparatus

Wen Jiang; Juan Chang; Joanita Jakana; Peter Weigele; Jonathan King; Wah Chiu

The critical viral components for packaging DNA, recognizing and binding to host cells, and injecting the condensed DNA into the host are organized at a single vertex of many icosahedral viruses. These component structures do not share icosahedral symmetry and cannot be resolved using a conventional icosahedral averaging method. Here we report the structure of the entire infectious Salmonella bacteriophage epsilon15 (ref. 1) determined from single-particle cryo-electron microscopy, without icosahedral averaging. This structure displays not only the icosahedral shell of 60 hexamers and 11 pentamers, but also the non-icosahedral components at one pentameric vertex. The densities at this vertex can be identified as the 12-subunit portal complex sandwiched between an internal cylindrical core and an external tail hub connecting to six projecting trimeric tailspikes. The viral genome is packed as coaxial coils in at least three outer layers with ∼90 terminal nucleotides extending through the protein core and the portal complex and poised for injection. The shell protein from icosahedral reconstruction at higher resolution exhibits a similar fold to that of other double-stranded DNA viruses including herpesvirus, suggesting a common ancestor among these diverse viruses. The image reconstruction approach should be applicable to studying other biological nanomachines with components of mixed symmetries.


Structure | 2012

Outcome of the first electron microscopy validation task force meeting

Richard Henderson; Andrej Sali; Matthew L. Baker; Bridget Carragher; Batsal Devkota; Kenneth H. Downing; Edward H. Egelman; Zukang Feng; Joachim Frank; Nikolaus Grigorieff; Wen Jiang; Steven J. Ludtke; Ohad Medalia; Pawel A. Penczek; Peter B. Rosenthal; Michael G. Rossmann; Michael F. Schmid; Gunnar F. Schröder; Alasdair C. Steven; David L. Stokes; John D. Westbrook; Willy Wriggers; Huanwang Yang; Jasmine Young; Helen M. Berman; Wah Chiu; Gerard J. Kleywegt; Catherine L. Lawson

This Meeting Review describes the proceedings and conclusions from the inaugural meeting of the Electron Microscopy Validation Task Force organized by the Unified Data Resource for 3DEM (http://www.emdatabank.org) and held at Rutgers University in New Brunswick, NJ on September 28 and 29, 2010. At the workshop, a group of scientists involved in collecting electron microscopy data, using the data to determine three-dimensional electron microscopy (3DEM) density maps, and building molecular models into the maps explored how to assess maps, models, and other data that are deposited into the Electron Microscopy Data Bank and Protein Data Bank public data archives. The specific recommendations resulting from the workshop aim to increase the impact of 3DEM in biology and medicine.


Structure | 2008

Protein structure fitting and refinement guided by cryo-EM density

Maya Topf; Keren Lasker; Ben Webb; Haim J. Wolfson; Wah Chiu; Andrej Sali

For many macromolecular assemblies, both a cryo-electron microscopy map and atomic structures of its component proteins are available. Here we describe a method for fitting and refining a component structure within its map at intermediate resolution (<15 A). The atomic positions are optimized with respect to a scoring function that includes the crosscorrelation coefficient between the structure and the map as well as stereochemical and nonbonded interaction terms. A heuristic optimization that relies on a Monte Carlo search, a conjugate-gradients minimization, and simulated annealing molecular dynamics is applied to a series of subdivisions of the structure into progressively smaller rigid bodies. The method was tested on 15 proteins of known structure with 13 simulated maps and 3 experimentally determined maps. At approximately 10 A resolution, Calpha rmsd between the initial and final structures was reduced on average by approximately 53%. The method is automated and can refine both experimental and predicted atomic structures.


Nature | 2014

Structure of the AcrAB–TolC multidrug efflux pump

Dijun Du; Zhao Wang; Nathan R. James; Jarrod Voss; Ewa Klimont; Henrietta Venter; Wah Chiu; Ben F. Luisi

The capacity of numerous bacterial species to tolerate antibiotics and other toxic compounds arises in part from the activity of energy-dependent transporters. In Gram-negative bacteria, many of these transporters form multicomponent ‘pumps’ that span both inner and outer membranes and are driven energetically by a primary or secondary transporter component. A model system for such a pump is the acridine resistance complex of Escherichia coli. This pump assembly comprises the outer-membrane channel TolC, the secondary transporter AcrB located in the inner membrane, and the periplasmic AcrA, which bridges these two integral membrane proteins. The AcrAB–TolC efflux pump is able to transport vectorially a diverse array of compounds with little chemical similarity, thus conferring resistance to a broad spectrum of antibiotics. Homologous complexes are found in many Gram-negative species, including in animal and plant pathogens. Crystal structures are available for the individual components of the pump and have provided insights into substrate recognition, energy coupling and the transduction of conformational changes associated with the transport process. However, how the subunits are organized in the pump, their stoichiometry and the details of their interactions are not known. Here we present the pseudo-atomic structure of a complete multidrug efflux pump in complex with a modulatory protein partner from E. coli. The model defines the quaternary organization of the pump, identifies key domain interactions, and suggests a cooperative process for channel assembly and opening. These findings illuminate the basis for drug resistance in numerous pathogenic bacterial species.


Journal of Virology | 2005

Common Ancestry of Herpesviruses and Tailed DNA Bacteriophages

Matthew L. Baker; Wen Jiang; Frazer J. Rixon; Wah Chiu

ABSTRACT Comparative analysis of capsid protein structures in the eukaryote-infecting herpesviruses (Herpesviridae) and the prokaryote-infecting tailed DNA bacteriophages (Caudovirales) revealed a characteristic fold that is restricted to these two virus lineages and is indicative of common ancestry. This fold not only serves as a major architectural element in capsid stability but also enables the conformational flexibility observed during viral assembly and maturation. On the basis of this and other emerging relationships, it seems increasingly likely that the very diverse collection of extant viruses may have arisen from a relatively small number of primordial progenitors.


Nature Structural & Molecular Biology | 2006

Close membrane-membrane proximity induced by Ca2+-dependent multivalent binding of synaptotagmin-1 to phospholipids

Demet Araç; Xiaocheng Chen; Htet A. Khant; Josep Ubach; Steven J. Ludtke; Masahide Kikkawa; Arthur E. Johnson; Wah Chiu; Thomas C. Südhof; Josep Rizo

Synaptotagmin acts as a Ca2+ sensor in neurotransmitter release through its two C2 domains. Ca2+-dependent phospholipid binding is key for synaptotagmin function, but it is unclear how this activity cooperates with the SNARE complex involved in release or why Ca2+ binding to the C2B domain is more crucial for release than Ca2+ binding to the C2A domain. Here we show that Ca2+ induces high-affinity simultaneous binding of synaptotagmin to two membranes, bringing them into close proximity. The synaptotagmin C2B domain is sufficient for this ability, which arises from the abundance of basic residues around its surface. We propose a model wherein synaptotagmin cooperates with the SNAREs in bringing the synaptic vesicle and plasma membranes together and accelerates membrane fusion through the highly positive electrostatic potential of its C2B domain.


Nature Structural & Molecular Biology | 2003

Coat protein fold and maturation transition of bacteriophage P22 seen at subnanometer resolutions.

Wen Jiang; Zongli Li; Matthew L. Baker; Peter E. Prevelige; Wah Chiu

Bacteriophage P22 is a prototypical biological machine used for studying protein complex assembly and capsid maturation. Using cryo-EM, we solved the structures of P22 before and after the capsid maturation at 8.5 Å and 9.5 Å resolutions, respectively. These structures allowed visualization of α-helices and β-sheets from which the capsid protein fold is derived. The capsid fold is similar to that of the coat protein of HK97 bacteriophage. The cryo-EM shows that a large conformational change of the P22 capsid during maturation transition involves not only the domain movement of individual subunits, but also refolding of the capsid protein.


Journal of Molecular Biology | 2009

Refinement of Protein Structures into Low-Resolution Density Maps Using Rosetta

Frank DiMaio; Michael D. Tyka; Matthew L. Baker; Wah Chiu; David Baker

We describe a method based on Rosetta structure refinement for generating high-resolution, all-atom protein models from electron cryomicroscopy density maps. A local measure of the fit of a model to the density is used to directly guide structure refinement and to identify regions incompatible with the density that are then targeted for extensive rebuilding. Over a range of test cases using both simulated and experimentally generated data, the method consistently increases the accuracy of starting models generated either by comparative modeling or by hand-tracing the density. The method can achieve near-atomic resolution starting from density maps at 4-6 A resolution.

Collaboration


Dive into the Wah Chiu's collaboration.

Top Co-Authors

Avatar

Steven J. Ludtke

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Joanita Jakana

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Michael F. Schmid

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Matthew L. Baker

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irina I. Serysheva

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Jonathan King

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Htet A. Khant

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge