Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hua Geng is active.

Publication


Featured researches published by Hua Geng.


Gastroenterology | 2009

Methylation of Protocadherin 10, a Novel Tumor Suppressor, Is Associated With Poor Prognosis in Patients With Gastric Cancer

Jun Yu; Yuen Yee Cheng; Qian Tao; Kin-Fai Cheung; Cleo Nga Yee Lam; Hua Geng; Linwei Tian; Ying P. Wong; Joanna Tong; Jianming Ying; Hongchuan Jin; Ka Fai To; Francis Ka-Leung Chan; Joseph J.Y. Sung

BACKGROUND & AIMS By using methylation-sensitive representational difference analysis, we identified protocadherin 10 (PCDH10), a gene that encodes a protocadherin and is silenced in a tumor-specific manner. We analyzed its epigenetic inactivation, biological effects, and prognostic significance in gastric cancer. METHODS Methylation status was evaluated by combined bisulfite restriction analysis and bisulfite sequencing. The effects of PCDH10 re-expression were determined in growth, apoptosis, proliferation, and invasion assays. PCDH10 target genes were identified by complementary DNA microarray analysis. RESULTS PCDH10 was silenced or down-regulated in 94% (16 of 17) of gastric cancer cell lines; expression levels were restored by exposure to demethylating agents. Re-expression of PCDH10 in MKN45 gastric cancer cells reduced colony formation in vitro and tumor growth in mice; it also inhibited cell proliferation (P < .01), induced cell apoptosis (P < .001), and repressed cell invasion (P < .05), up-regulating the pro-apoptosis genes Fas, Caspase 8, Jun, and CDKN1A; the antiproliferation gene FGFR; and the anti-invasion gene HTATIP2. PCDH10 methylation was detected in 82% (85 of 104) of gastric tumors compared with 37% (38 of 104) of paired nontumor tissues (P < .0001). In the latter, PCDH10 methylation was higher in precancerous lesions (27 of 45; 60%) than in chronic gastritis samples (11 of 59; 19%) (P < .0001). After a median follow-up period of 16.8 months, multivariate analysis revealed that patients with PCDH10 methylation in adjacent nontumor areas had a significant decrease in overall survival. Kaplan-Meier survival curves showed that PCDH10 methylation was associated significantly with shortened survival in stage I-III gastric cancer patients. CONCLUSIONS PCDH10 is a gastric tumor suppressor; its methylation at early stages of gastric carcinogenesis is an independent prognostic factor.


Cancer Research | 2010

KRAB Zinc Finger Protein ZNF382 Is a Proapoptotic Tumor Suppressor That Represses Multiple Oncogenes and Is Commonly Silenced in Multiple Carcinomas

Yingduan Cheng; Hua Geng; Suk Hang Cheng; Pei Liang; Yan Bai; Jisheng Li; Gopesh Srivastava; Margaret H.L. Ng; Tatsuo Fukagawa; Xiushan Wu; Anthony T.C. Chan; Qian Tao

Zinc finger transcription factors are involved broadly in development and tumorigenesis. Here, we report that the little studied zinc finger transcription factor ZNF382 functions as a tumor suppressor in multiple carcinomas. Although broadly expressed in normal tissues, ZNF382 expression was attenuated in multiple carcinoma cell lines due to promoter CpG methylation. ZNF382 was also frequently methylated in multiple primary tumors (nasopharyngeal, esophageal, colon, gastric, and breast). Ectopic expression of ZNF382 in silenced tumor cells significantly inhibited their clonogenicity and proliferation and induced apoptosis. We further found that ZNF382 inhibited NF-kappaB and AP-1 signaling and downregulated the expression of multiple oncogenes including MYC, MITF, HMGA2, and CDK6, as well as the NF-kappaB upstream factors STAT3, STAT5B, ID1, and IKBKE, most likely through heterochromatin silencing. ZNF382 could suppress tumorigenesis through heterochromatin-mediated silencing, as ZNF382 was colocalized and interacted with heterochromatin protein HP1 and further changed the chromatin modifications of ZNF382 target oncogenes. Our data show that ZNF382 is a functional tumor suppressor frequently methylated in multiple carcinomas.


Cancer Research | 2009

CMTM3, Located at the Critical Tumor Suppressor Locus 16q22.1, Is Silenced by CpG Methylation in Carcinomas and Inhibits Tumor Cell Growth through Inducing Apoptosis

Yu Wang; Jisheng Li; Yan Cui; Ting Li; Ka Man Ng; Hua Geng; Henan Li; Xingsheng Shu; Hongyu Li; Wei Liu; Bing Luo; Qian Zhang; Tony Mok; Wei Zheng; Xiaoyan Qiu; Gopesh Srivastava; Jun Yu; Joseph J.Y. Sung; Anthony T.C. Chan; Dalong Ma; Qian Tao; Wenling Han

Closely located at the tumor suppressor locus 16q22.1, CKLF-like MARVEL transmembrane domain-containing member 3 and 4 (CMTM3 and CMTM4) encode two CMTM family proteins, which link chemokines and the transmembrane-4 superfamily. In contrast to the broad expression of both CMTM3 and CMTM4 in normal human adult tissues, only CMTM3 is silenced or down-regulated in common carcinoma (gastric, breast, nasopharyngeal, esophageal, and colon) cell lines and primary tumors. CMTM3 methylation was not detected in normal epithelial cell lines and tissues, with weak methylation present in only 5 of 35 (14%) gastric cancer adjacent normal tissues. Furthermore, immunohistochemistry showed that CMTM3 protein was absent in 12 of 35 (34%) gastric and 1 of 2 colorectal tumors, which was well correlated with its methylation status. The silencing of CMTM3 is due to aberrant promoter CpG methylation that could be reversed by pharmacologic demethylation. Ectopic expression of CMTM3 strongly suppressed the colony formation of carcinoma cell lines. In addition, CMTM3 inhibited tumor cell growth and induced apoptosis with caspase-3 activation. Thus, CMTM3 exerts tumor-suppressive functions in tumor cells, with frequent epigenetic inactivation by promoter CpG methylation in common carcinomas.


British Journal of Cancer | 2009

DLEC1 is a functional 3p22.3 tumour suppressor silenced by promoter CpG methylation in colon and gastric cancers

Jianming Ying; FanFong Poon; Jun Yu; Hua Geng; Ada Ho Yan Wong; Guohua Qiu; HweeKoon Goh; Sunyoung Rha; Linwei Tian; Anthony W.H. Chan; Joseph J.Y. Sung; Qian Tao

Promoter CpG methylation of tumour suppressor genes (TSGs) is an epigenetic biomarker for TSG identification and molecular diagnosis. We screened genome wide for novel methylated genes through methylation subtraction of a genetic demethylation model of colon cancer (double knockout of DNMT1 and DNMT3B in HCT116) and identified DLEC1 (Deleted in lung and oesophageal cancer 1), a major 3p22.3 TSG, as one of the methylated targets. We further found that DLEC1 was downregulated or silenced in most colorectal and gastric cell lines due to promoter methylation, whereas broadly expressed in normal tissues including colon and stomach, and unmethylated in expressing cell lines and immortalised normal colon epithelial cells. DLEC1 expression was reactivated through pharmacologic or genetic demethylation, indicating a DNMT1/DNMT3B-mediated methylation silencing. Aberrant methylation was further detected in primary colorectal (10 out of 34, 29%) and gastric tumours (30 out of 89, 34%), but seldom in paired normal colon (0 out of 17) and gastric (1 out of 20, 5%) samples. No correlation between DLEC1 methylation and clinical parameters of gastric cancers was found. Ectopic expression of DLEC1 in silenced HCT116 and MKN45 cells strongly inhibited their clonogenicity. Thus, DLEC1 is a functional tumour suppressor, being frequently silenced by epigenetic mechanism in gastrointestinal tumours.


PLOS ONE | 2011

The Epigenetic Modifier PRDM5 Functions as a Tumor Suppressor through Modulating WNT/β-Catenin Signaling and Is Frequently Silenced in Multiple Tumors

Xing sheng Shu; Hua Geng; Lili Li; Jianming Ying; Chunhong Ma; Yajun Wang; Fan Fong Poon; Xian Wang; Ying Ying; Winnie Yeo; Gopesh Srivastava; Sai Wah Tsao; Jun Yu; Joseph J.Y. Sung; Shi Huang; Anthony T.C. Chan; Qian Tao

Background PRDM (PRDI-BF1 and RIZ domain containing) proteins are zinc finger proteins involved in multiple cellular regulations by acting as epigenetic modifiers. We studied a recently identified PRDM member PRDM5 for its epigenetic abnormality and tumor suppressive functions in multiple tumorigeneses. Methodology/Principal Findings Semi-quantitative RT-PCR showed that PRDM5 was broadly expressed in human normal tissues, but frequently silenced or downregulated in multiple carcinoma cell lines due to promoter CpG methylation, including 80% (4/5) nasopharyngeal, 44% (8/18) esophageal, 76% (13/17) gastric, 50% (2/4) cervical, and 25% (3/12) hepatocellular carcinoma cell lines, but not in any immortalized normal epithelial cell lines. PRDM5 expression could be restored by 5-aza-2′-deoxycytidine demethylation treatment in silenced cell lines. PRDM5 methylation was frequently detected by methylation-specific PCR (MSP) in multiple primary tumors, including 93% (43/46) nasopharyngeal, 58% (25/43) esophageal, 88% (37/42) gastric and 63% (29/46) hepatocellular tumors. PRDM5 was further found a stress-responsive gene, but its response was impaired when the promoter was methylated. Ectopic PRDM5 expression significantly inhibited tumor cell clonogenicity, accompanied by the inhibition of TCF/β-catenin-dependent transcription and downregulation of CDK4, TWIST1 and MDM2 oncogenes, while knocking down of PRDM5 expression lead to increased cell proliferation. ChIP assay showed that PRDM5 bound to its target gene promoters and suppressed their transcription. An inverse correlation between the expression of PRDM5 and activated β-catenin was also observed in cell lines. Conclusions/Significance PRDM5 functions as a tumor suppressor at least partially through antagonizing aberrant WNT/β-catenin signaling and oncogene expression. Frequent epigenetic silencing of PRDM5 is involved in multiple tumorigeneses, which could serve as a tumor biomarker.


Molecular Cancer Research | 2012

A Novel 19q13 Nucleolar Zinc Finger Protein Suppresses Tumor Cell Growth through Inhibiting Ribosome Biogenesis and Inducing Apoptosis but Is Frequently Silenced in Multiple Carcinomas

Yingduan Cheng; Pei Liang; Hua Geng; Zhaohui Wang; Lili Li; Suk Hang Cheng; Jianming Ying; Xianwei Su; Ka Man Ng; Margaret H.L. Ng; Tony Mok; Anthony T.C. Chan; Qian Tao

Epigenetic disruption of tumor suppressor genes is frequently involved in tumorigenesis. We identified a novel 19q13 KRAB domain-containing zinc finger protein, ZNF545/ZFP82, broadly expressed in normal tissues but downregulated in multiple tumor cell lines. The ZNF545 promoter contains a CpG island, which is frequently methylated in cell lines. The transcriptional silencing of ZNF545 could be reversed by pharmacologic or genetic demethylation, indicating direct epigenetic silencing. ZNF545 was also frequently methylated in multiple primary tumors of nasopharyngeal, esophageal, lung, gastric, colon, and breast, but rarely in normal epithelial tissues and paired normal tissues. ZNF545 is located in the nucleus and mainly sequestered in nucleoli, functioning as a repressor. ZNF545 is able to repress NF-κB and AP-1 signaling pathways, whereas ectopic expression of ZNF545 in silenced tumor cells significantly inhibited their growth and induced apoptosis. Functional studies showed that ZNF545 was involved in ribosome biogenesis through inhibiting the activity of rDNA promoter and decreasing cellular protein translation efficiency. Thus, we identified ZNF545 as a novel tumor suppressor inducing tumor cell apoptosis, repressing ribosome biogenesis and target gene transcription. The tumor-specific methylation of ZNF545 could be an epigenetic biomarker for cancer diagnosis. Mol Cancer Res; 10(7); 925–36. ©2012 AACR.


PLOS ONE | 2011

Apolipoprotein M Gene (APOM) Polymorphism Modifies Metabolic and Disease Traits in Type 2 Diabetes

Jun Wei Zhou; Stephen Kwok-Wing Tsui; Maggie C.Y. Ng; Hua Geng; Sai Kam Li; Wing Yee So; Ronald C.W. Ma; Ying Wang; Qian Tao; Zhen Yu Chen; Juliana C.N. Chan; Yuan Yuan Ho

This study aimed at substantiating the associations of the apolipoproein M gene (APOM) with type 2 diabetes (T2D) as well as with metabolic traits in Hong Kong Chinese. In addition, APOM gene function was further characterized to elucidate its activity in cholesterol metabolism. Seventeen APOM SNPs documented in the NCBI database were genotyped. Five SNPs were confirmed in our study cohort of 1234 T2D and 606 control participants. Three of the five SNPs rs707921(C+1871A), rs707922(G+1837T) and rs805264(G+203A) were in linkage disequilibrium (LD). We chose rs707922 to tag this LD region for down stream association analyses and characterized the function of this SNP at molecular level. No association between APOM and T2D susceptibility was detected in our Hong Kong Chinese cohort. Interestingly, the C allele of rs805297 was significantly associated with T2D duration of longer than 10 years (OR = 1.245, p = 0.015). The rs707922 TT genotype was significantly associated with elevated plasma total- and LDL- cholesterol levels (p = 0.006 and p = 0.009, respectively) in T2D patients. Molecular analyses of rs707922 lead to the discoveries of a novel transcript APOM5 as well as the cryptic nature of exon 5 of the gene. Ectopic expression of APOM5 transcript confirmed rs707922 allele-dependent activity of the transcript in modifying cholesterol homeostasis in vitro. In conclusion, the results here did not support APOM as a T2D susceptibility gene in Hong Kong Chinese. However, in T2D patients, a subset of APOM SNPs was associated with disease duration and metabolic traits. Further molecular analysis proved the functional activity of rs707922 in APOM expression and in regulation of cellular cholesterol content.


American Journal of Pathology | 2010

Epigenetic Silencing of a Proapoptotic Cell Adhesion Molecule, the Immunoglobulin Superfamily Member IGSF4, by Promoter CpG Methylation Protects Hodgkin Lymphoma Cells from Apoptosis

Paul G. Murray; Yichao Fan; Gillian Davies; Jianming Ying; Hua Geng; Ka Man Ng; Hongyu Li; Zifen Gao; Wenbin Wei; Shikha Bose; Jennifer Anderton; Georgia Kapatai; Gary M. Reynolds; Akihiko Ito; Teresa Marafioti; Ciaran Woodman; Richard F. Ambinder; Qian Tao

The malignant Hodgkin/Reed-Sternberg (HRS) cells of Hodgkin lymphoma (HL) are believed to derive from germinal center (GC) B cells, but lack expression of a functional B cell receptor. As apoptosis is the normal fate of B-cell receptor-negative GC B cells, mechanisms that abrogate apoptosis are thus critical in HL development, such as epigenetic disruption of certain pro-apoptotic cancer genes including tumor suppressor genes. Identifying methylated genes elucidates oncogenic mechanisms and provides valuable biomarkers; therefore, we performed a chemical epigenetic screening for methylated genes in HL through pharmacological demethylation and expression profiling. IGSF4/CADM1/TSLC1, a pro-apoptotic cell adhesion molecule of the immunoglobulin superfamily, was identified together with other methylated targets. In contrast to its expression in normal GC B cells, IGSF4 was down-regulated and methylated in HL cell lines, most primary HL, and microdissected HRS cells of 3/5 cases, but not in normal peripheral blood mononuclear cells and seldom in normal lymph nodes. We also detected IGSF4 methylation in sera of 14/18 (78%) HL patients but seldom in normal sera. Ectopic IGSF4 expression decreased HL cells survival and increased their sensitivity to apoptosis. IGSF4 induction that normally follows heat shock stress treatment was also abrogated in methylated lymphoma cells. Thus, our data demonstrate that IGSF4 silencing by CpG methylation provides an anti-apoptotic signal to HRS cells important in HL pathogenesis.


International Journal of Cancer | 2009

Frequent concomitant epigenetic silencing of the stress‐responsive tumor suppressor gene CADM1, and its interacting partner DAL‐1 in nasal NK/T‐cell lymphoma

Li Fu; Zifen Gao; Xiaohua Zhang; Ying Hung Tsang; Hwee Koon Goh; Hua Geng; Norio Shimizu; Junjiro Tsuchiyama; Gopesh Srivastava; Qian Tao

Nasal NK/T‐cell lymphoma (NL) is a rare but clinically important entity of lymphoma. Its preferential incidence in Orientals but not Caucasians suggests possible genetic predisposition. 11q deletion is common in NL, indicating certain tumor suppressor genes (TSGs) at this locus involved in its pathogenesis. We investigated the expression and methylation of an 11q23.2 TSG, CADM1 (or TSLC1), and its partner DAL‐1 (or EPB41L3) in NL. Methylation and silencing of CADM1 were detected in 2 NL and 4 of 8 (50%) of non‐Hodgkin lymphoma (NHL) cell lines, but not in normal NK cells and normal PBMC. Absence of CADM1 protein was also detected in NL cell lines. 5‐aza‐2′‐deoxycytidine (Aza) demethylation or genetic knockout of both DNMT1 and 3B genes restored CADM1 and DAL‐1 expression. CADM1 methylation was further detected in 36 of 45 (80%) of NL tumors. Concomitantly, DAL‐1 was epigenetically inactivated in NL cell lines and virtually all the tumors with methylated CADM1. A significant correlation between the methylation of both genes was found (p < 0.0001). Homozygous deletion of CADM1 was detected in only 3 of 18 (17%) of tumors. The stress‐response of CADM1 was abolished when its promoter becomes methylated. Our results demonstrate a frequent, predominant epigenetic silencing of CADM1 and DAL‐1 in NL, which likely play a synergic role in NL pathogenesis.


PLOS ONE | 2011

APOE Genotype-Function Relationship: Evidence of −491 A/T Promoter Polymorphism Modifying Transcription Control but Not Type 2 Diabetes Risk

Hua Geng; Peggy P.Y. Law; Maggie C.Y. Ng; Ting Li; Li-Yun Liang; Tiang-Fang Ge; Kam-Bo Wong; Chun Liang; Ronald C.W. Ma; Wing Yee So; Juliana C.N. Chan; Yuan-Yuan Ho

Background The apolipoprotein E gene (APOE) coding polymorphism modifies the risks of Alzheimers disease, type 2 diabetes, and coronary heart disease. Aside from the coding variants, single nucleotide polymorphism (SNP) of the APOE promoter has also been shown to modify the risk of Alzheimers disease. Methodology/Principal Findings In this study we investigate the genotype-function relationship of APOE promoter polymorphism at molecular level and at physiological level: i.e., in transcription control of the gene and in the risk of type 2 diabetes. In molecular studies, the effect of the APOE −491A/T (rs449647) polymorphism on gene transcription was accessed by dual-luciferase reporter gene assays. The −491 A to T substitution decreased the activity (p<0.05) of the cloned APOE promoter (−1017 to +406). Using the −501 to −481 nucleotide sequence of the APOE promoter as a ‘bait’ to screen the human brain cDNA library by yeast one-hybrid system yielded ATF4, an endoplasmic reticulum stress response gene, as one of the interacting factors. Electrophoretic-mobility-shift assays (EMSA) and chromatin immuno-precipitation (ChIP) analyses further substantiated the physical interaction between ATF4 and the APOE promoter. Over-expression of ATF4 stimulated APOE expression whereas siRNA against ATF4 suppressed the expression of the gene. However, interaction between APOE promoter and ATF4 was not −491A/T-specific. At physiological level, the genotype-function relationship of APOE promoter polymorphism was studied in type 2 diabetes. In 630 cases and 595 controls, three APOE promoter SNPs −491A/T, −219G/T (rs405509), and +113G/C (rs440446) were genotyped and tested for association with type 2 diabetes in Hong Kong Chinese. No SNP or haplotype association with type 2 diabetes was detected. Conclusions/Significance At molecular level, polymorphism −491A/T and ATF4 elicit independent control of APOE gene expression. At physiological level, no genotype-risk association was detected between the studied APOE promoter SNPs and type 2 diabetes in Hong Kong Chinese.

Collaboration


Dive into the Hua Geng's collaboration.

Top Co-Authors

Avatar

Qian Tao

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Anthony T.C. Chan

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Jianming Ying

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ka Man Ng

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Margaret H.L. Ng

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Pei Liang

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Suk Hang Cheng

The Chinese University of Hong Kong

View shared research outputs
Researchain Logo
Decentralizing Knowledge