Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hua Gui Yang is active.

Publication


Featured researches published by Hua Gui Yang.


Nature | 2008

Anatase TiO 2 single crystals with a large percentage of reactive facets

Hua Gui Yang; Chenghua Sun; Shi Zhang Qiao; Jin Zou; Gang Liu; Sean C. Smith; Hui-Ming Cheng; Gao Qing Lu

Owing to their scientific and technological importance, inorganic single crystals with highly reactive surfaces have long been studied. Unfortunately, surfaces with high reactivity usually diminish rapidly during the crystal growth process as a result of the minimization of surface energy. A typical example is titanium dioxide (TiO2), which has promising energy and environmental applications. Most available anatase TiO2 crystals are dominated by the thermodynamically stable {101} facets (more than 94 per cent, according to the Wulff construction), rather than the much more reactive {001} facets. Here we demonstrate that for fluorine-terminated surfaces this relative stability is reversed: {001} is energetically preferable to {101}. We explored this effect systematically for a range of non-metallic adsorbate atoms by first-principle quantum chemical calculations. On the basis of theoretical predictions, we have synthesized uniform anatase TiO2 single crystals with a high percentage (47 per cent) of {001} facets using hydrofluoric acid as a morphology controlling agent. Moreover, the fluorated surface of anatase single crystals can easily be cleaned using heat treatment to render a fluorine-free surface without altering the crystal structure and morphology.


Journal of the American Chemical Society | 2009

Solvothermal Synthesis and Photoreactivity of Anatase TiO(2) Nanosheets with Dominant {001} Facets

Hua Gui Yang; Gang Liu; Shi Zhang Qiao; Chenghua Sun; Yonggang Jin; Sean C. Smith; Jin Zou; Hui-Ming Cheng; Gao Qing Lu

Owing to wide-ranging industrial applications and fundamental importance, tailored synthesis of well-faceted single crystals of anatase TiO(2) with high percentage of reactive facets has attracted much research interest. In this work, high-quality anatase TiO(2) single-crystal nanosheets mainly dominated by {001} facets have been prepared by using a water-2-propanol solvothermal synthetic route. The synergistic functions of 2-propanol and HF on the growth of anatase TiO(2) single-crystal nanosheets were studied by first-principle theoretical calculations, revealing that the addition of 2-propanol can strengthen the stabilization effect associated with fluorine adsorption over (001) surface and thus stimulate its preferred growth. By measuring the (*)OH species with terephthalic acid scavenger, the as-prepared anatase TiO(2) single-crystal nanosheets having 64% {001} facets show superior photoreactivity (more than 5 times), compared to P25 as a benchmarking material.


Journal of Materials Chemistry | 2010

Titania-based photocatalysts-crystal growth, doping and heterostructuring

Gang Liu; Lianzhou Wang; Hua Gui Yang; Hui-Ming Cheng; Gao Qing Lu

Semiconductor photocatalysts have important applications in renewable energy and environment fields. To overcome the serious drawbacks of low efficiency and narrow light-response range in most stable semiconductor photocatalysts, many strategies have been developed in the past decades. This review attempts to provide a comprehensive update and examination of some fundamental issues in titania (TiO2)-based semiconductor photocatalysts, such as crystal growth, doping and heterostructuring. We focus especially on recent progress in exploring new strategies to design TiO2-based photocatalysts with unique structures and properties, elucidating the chemical states and distribution of dopants in doped TiO2, designing and fabricating integrated heterostructure photocatalysts with different charge-carrier transfer pathways, and finally identifying the key factors in determining the photocatalytic efficiency of titania-based photocatalysts.


Journal of the American Chemical Society | 2009

Visible Light Responsive Nitrogen Doped Anatase TiO2 Sheets with Dominant {001} Facets Derived from TiN

Gang Liu; Hua Gui Yang; Xuewen Wang; Lina Cheng; Jian Pan; Gao Qing Lu; Hui-Ming Cheng

We demonstrated a facile route for one-pot synthesis of visible light responsive nitrogen doped anatase TiO(2) sheets with dominant {001} facets from TiN. The synthesized anatase TiO(2) sheets show a strong and stable capability of generating photocatalysis active species of *OH radicals and hydrogen evolution from splitting water under visible light irradiation.


Chemical Reviews | 2014

Titanium dioxide crystals with tailored facets.

Gang Liu; Hua Gui Yang; Jian Pan; Yong Qiang Yang; Gao Qing Lu; Hui-Ming Cheng

Titanium dioxide (TiO2) has been the most intensively investigated binary transition metal oxide in the past four decades as indicated by Figure S1. Furthermore, the annual number of papers published on TiO2 has seen a continuous increase, particularly since the beginning of this century (Figure S2). This is understandable when one considers the wide range of applications of TiO2 from the conventional areas (i.e., pigment, cosmetic, toothpaste, and paint) to the later developed functional areas such as photoelectrochemical cell,(1-3) dye-sensitized solar cells (DSSCs),(4-11) photocatalysis,(12-24) catalysis,(25-31) photovoltaic cell,(32-34) lithium ion batteries,(35-41) sensors,(42-46) electron field emission,(47-51) microwave absorbing material, biomimetic growth, and biomedical treatments.(52-57) Nearly all these functional applications of TiO2 fall in the scope of energy, environment, and health, which are definitely the three most important and challenging themes facing the Human race that need to be addressed in this century. Besides the apparent merits including nontoxicity, elemental abundance, good chemical stability, and easy synthesis, TiO2 has attracted strong research interest worldwide due to its physicochemical properties for realizing various functions.(15, 58, 59) Especially, very encouraging progresses in photocatalysis and DSSCs with the involvement of TiO2 have greatly stimulated the rapid development of TiO2 crystals with controllable phase, size, shape, defect, and heteroatom.(58, 60-68)


Science | 2016

Homogeneously dispersed, multimetal oxygen-evolving catalysts

Bo Zhang; Xueli Zheng; Oleksandr Voznyy; Riccardo Comin; Michal Bajdich; Max García-Melchor; Lili Han; Jixian Xu; Min Liu; Lirong Zheng; F. Pelayo García de Arquer; Cao Thang Dinh; Fengjia Fan; Mingjian Yuan; Emre Yassitepe; Ning Chen; Tom Regier; Peng Fei Liu; Yuhang Li; Phil De Luna; Alyf Janmohamed; Huolin L. Xin; Hua Gui Yang; Aleksandra Vojvodic; Edward H. Sargent

Modulating metal oxides The more difficult step in fuel cells and water electrolysis is the oxygen evolution reaction. The search for earth-abundant materials to replace noble metals for this reaction often turns to oxides of three-dimensional metals such as iron. Zhang et al. show that the applied voltages needed to drive this reaction are reduced for iron-cobalt oxides by the addition of tungsten. The addition of tungsten favorably modulates the electronic structure of the oxyhydroxide. A key development is to keep the metals well mixed and avoid the formation of separate phases. Science, this issue p. 333 The addition of tungsten to iron cobalt oxides lowers the overpotential required for the evolution of oxygen from water. Earth-abundant first-row (3d) transition metal–based catalysts have been developed for the oxygen-evolution reaction (OER); however, they operate at overpotentials substantially above thermodynamic requirements. Density functional theory suggested that non-3d high-valency metals such as tungsten can modulate 3d metal oxides, providing near-optimal adsorption energies for OER intermediates. We developed a room-temperature synthesis to produce gelled oxyhydroxides materials with an atomically homogeneous metal distribution. These gelled FeCoW oxyhydroxides exhibit the lowest overpotential (191 millivolts) reported at 10 milliamperes per square centimeter in alkaline electrolyte. The catalyst shows no evidence of degradation after more than 500 hours of operation. X-ray absorption and computational studies reveal a synergistic interplay between tungsten, iron, and cobalt in producing a favorable local coordination environment and electronic structure that enhance the energetics for OER.


Journal of the American Chemical Society | 2010

Top-Down Fabrication of α-Fe2O3 Single-Crystal Nanodiscs and Microparticles with Tunable Porosity for Largely Improved Lithium Storage Properties

Jun Song Chen; Ting Zhu; Xiao Hua Yang; Hua Gui Yang; Xiong Wen (David) Lou

In this work, we report a facile top-down approach to fabricate uniform single-crystal α-Fe(2)O(3) nanodiscs via selective oxalic acid etching. Phosphate ions are employed as a capping agent to control the etching to along the [001] direction. We also show that α-Fe(2)O(3) melon-like microparticles with contrasting textural properties can be generated using the same approach. The etched particles exhibit a much larger total pore volume and average pore size compared to the pristine ones, thus serving as the possible origin for their greatly enhanced capacity retention when tested as potential anode materials for lithium-ion batteries.


Nature Communications | 2013

Rational screening low-cost counter electrodes for dye-sensitized solar cells

Yu Hou; Dong Wang; Xiao Hua Yang; Wen Qi Fang; Bo Zhang; Hai Feng Wang; Guanzhong Lu; P. Hu; Huijun Zhao; Hua Gui Yang

Dye-sensitized solar cells have attracted intense research attention owing to their ease of fabrication, cost-effectiveness and high efficiency in converting solar energy. Noble platinum is generally used as catalytic counter electrode for redox mediators in electrolyte solution. Unfortunately, platinum is expensive and non-sustainable for long-term applications. Therefore, researchers are facing with the challenge of developing low-cost and earth-abundant alternatives. So far, rational screening of non-platinum counter electrodes has been hamstrung by the lack of understanding about the electrocatalytic process of redox mediators on various counter electrodes. Here, using first-principle quantum chemical calculations, we studied the electrocatalytic process of redox mediators and predicted electrocatalytic activity of potential semiconductor counter electrodes. On the basis of theoretical predictions, we successfully used rust (α-Fe2O3) as a new counter electrode catalyst, which demonstrates promising electrocatalytic activity towards triiodide reduction at a rate comparable to platinum.


Physical Chemistry Chemical Physics | 2013

Recent progress in biomedical applications of titanium dioxide

Zi Fei Yin; Long Wu; Hua Gui Yang; Yong Hua Su

As one of the most common chemical materials, titanium dioxide (TiO2) has been prepared and widely used for many years. Among all the applications, the biomedical applications of TiO2 have motivated strong interest and intensive experimental and theoretical studies, owing to its unique photocatalytic properties, excellent biocompatibility, high chemical stability, and low toxicity. Advances in nanoscale science suggest that some of the current problems of life science could be resolved or greatly improved through applying TiO2. This paper presents a critical review of recent advances in the biomedical applications of TiO2, which includes the photodynamic therapy for cancer treatment, drug delivery systems, cell imaging, biosensors for biological assay, and genetic engineering. The characterizations and applications of TiO2 nanoparticles, as well as nanocomposites and nanosystems of TiO2, which have been prepared by different modifications to improve the function of TiO2, are also offered in this review. Additionally, some perspectives on the challenges and new directions for future research in this emerging frontier are discussed.


CrystEngComm | 2011

Ultra-thin anatase TiO2 nanosheets dominated with {001} facets: thickness-controlled synthesis, growth mechanism and water-splitting properties

Xiao Hua Yang; Zhen Li; Gang Liu; Jun Xing; Chenghua Sun; Hua Gui Yang; Chunzhong Li

Ultra-thin anatase TiO2 nanosheets with dominant {001} facets (∼82%) and controllable thickness (1.6–2.7 nm) were synthesized by using a modified one-pot hydrothermal route. As a morphology controlling agent, the concentration of hydrofluoric acid has a significant impact on the thickness of the as-synthesized TiO2 nanosheets. In addition, according to the XRD patterns and TEM images of the products on different reaction stages, the growth process of TiO2 nanosheets was clarified for the first time. We further measured the efficiency for H2 evolution of the ultra-thin anatase TiO2 nanosheets loaded with 1 wt% Pt from photochemical reduction of water in the presence of methanol as a scavenger. The TiO2 nanosheets exhibited a H2 evolution rate as high as 7381 μmol h−1 g−1 under UV-vis light irradiation, attributing to their exposed reactive {001} facets and high crystallinity.

Collaboration


Dive into the Hua Gui Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuang Yang

East China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Hou

East China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Hang Li

East China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Bo Zhang

East China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Haimin Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Peng Fei Liu

East China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Xiao Hua Yang

East China University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge