Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huai Deng is active.

Publication


Featured researches published by Huai Deng.


Development | 2005

The JIL-1 histone H3S10 kinase regulates dimethyl H3K9 modifications and heterochromatic spreading in Drosophila

Weiguo Zhang; Huai Deng; Xiaomin Bao; Stephanie Lerach; Jack Girton; Jørgen Johansen; Kristen M. Johansen

In this study, we show that a reduction in the levels of the JIL-1 histone H3S10 kinase results in the spreading of the major heterochromatin markers dimethyl H3K9 and HP1 to ectopic locations on the chromosome arms, with the most pronounced increase on the X chromosomes. Genetic interaction assays demonstrated that JIL-1 functions in vivo in a pathway that includes Su(var)3-9, which is a major catalyst for dimethylation of the histone H3K9 residue, HP1 recruitment, and the formation of silenced heterochromatin. We further provide evidence that JIL-1 activity and localization are not affected by the absence of Su(var)3-9 activity, suggesting that JIL-1 is upstream of Su(var)3-9 in the pathway. Based on these findings, we propose a model where JIL-1 kinase activity functions to maintain euchromatic regions by antagonizing Su(var)3-9-mediated heterochromatization.


Chromosoma | 2005

The JIL-1 kinase regulates the structure of Drosophila polytene chromosomes

Huai Deng; Weiguo Zhang; Xiaomin Bao; Janine N. Martin; Jack Girton; Jørgen Johansen; Kristen M. Johansen

The JIL-1 kinase localizes to interband regions of Drosophila polytene chromosomes and phosphorylates histone H3 Ser10. Analysis of JIL-1 hypomorphic alleles demonstrated that reduced levels of JIL-1 protein lead to global changes in polytene chromatin structure. Here we have performed a detailed ultrastructural and cytological analysis of the defects in JIL-1 mutant chromosomes. We show that all autosomes and the female X chromosome are similarly affected, whereas the defects in the male X chromosome are qualitatively different. In polytene autosomes, loss of JIL-1 leads to misalignment of interband chromatin fibrils and to increased ectopic contacts between nonhomologous regions. Furthermore, there is an abnormal coiling of the chromosomes with an intermixing of euchromatic regions and the compacted chromatin characteristic of banded regions. In contrast, coiling of the male X polytene chromosome was not observed. Instead, the shortening of the male X chromosome appeared to be caused by increased dispersal of the chromatin into a diffuse network without any discernable banded regions. To account for the observed phenotypes we propose a model in which JIL-1 functions to establish or maintain the parallel alignment of interband chromosome fibrils as well as to repress the formation of contacts and intermingling of nonhomologous chromatid regions.


Journal of Cell Science | 2006

The chromodomain protein, Chromator, interacts with JIL-1 kinase and regulates the structure of Drosophila polytene chromosomes

Uttama Rath; Yun Ding; Huai Deng; Hongying Qi; Xiaomin Bao; Weiguo Zhang; Jack Girton; Jørgen Johansen; Kristen M. Johansen

In this study we have generated two new hypomorphic Chro alleles and analyzed the consequences of reduced Chromator protein function on polytene chromosome structure. We show that in Chro71/Chro612 mutants the polytene chromosome arms were coiled and compacted with a disruption and misalignment of band and interband regions and with numerous ectopic contacts connecting non-homologous regions. Furthermore, we demonstrate that Chromator co-localizes with the JIL-1 kinase at polytene interband regions and that the two proteins interact within the same protein complex. That both proteins are necessary and may function together is supported by the finding that a concomitant reduction in JIL-1 and Chromator function synergistically reduces viability during development. Overlay assays and deletion construct analysis suggested that the interaction between JIL-1 and Chromator is direct and that it is mediated by sequences in the C-terminal domain of Chromator and by the acidic region within the C-terminal domain of JIL-1. Taken together these findings indicate that Chromator and JIL-1 interact in an interband-specific complex that functions to establish or maintain polytene chromosome structure in Drosophila.


Development | 2008

RNA polymerase II-mediated transcription at active loci does not require histone H3S10 phosphorylation in Drosophila.

Weili Cai; Xiaomin Bao; Huai Deng; Ye Jin; Jack Girton; Jørgen Johansen; Kristen M. Johansen

JIL-1 is the major kinase controlling the phosphorylation state of histone H3S10 at interphase in Drosophila. In this study, we used three different commercially available histone H3S10 phosphorylation antibodies, as well as an acid-free polytene chromosome squash protocol that preserves the antigenicity of the histone H3S10 phospho-epitope, to examine the role of histone H3S10 phosphorylation in transcription under both heat shock and non-heat shock conditions. We show that there is no redistribution or upregulation of JIL-1 or histone H3S10 phosphorylation at transcriptionally active puffs in such polytene squash preparations after heat shock treatment. Furthermore, we provide evidence that heat shock-induced puffs in JIL-1 null mutant backgrounds are strongly labeled by antibody to the elongating form of RNA polymerase II (Pol IIoser2), indicating that Pol IIoser2 is actively involved in heat shock-induced transcription in the absence of histone H3S10 phosphorylation. This is supported by the finding that there is no change in the levels of Pol IIoser2 in JIL-1 null mutant backgrounds compared with wild type. mRNA from the six genes that encode the major heat shock protein in Drosophila, Hsp70, is transcribed at robust levels in JIL-1 null mutants, as directly demonstrated by qRT-PCR. Taken together, these data are inconsistent with the model that Pol II-dependent transcription at active loci requires JIL-1-mediated histone H3S10 phosphorylation, and instead support a model in which transcriptional defects in the absence of histone H3S10 phosphorylation are a result of structural alterations of chromatin.


PLOS Genetics | 2013

Regulation of Drosophila metamorphosis by xenobiotic response regulators.

Huai Deng; Tom K. Kerppola

Mammalian Nrf2-Keap1 and the homologous Drosophila CncC-dKeap1 protein complexes regulate both transcriptional responses to xenobiotic compounds as well as native cellular and developmental processes. The relationships between the functions of these proteins in xenobiotic responses and in development were unknown. We investigated the genes regulated by CncC and dKeap1 during development and the signal transduction pathways that modulate their functions. CncC and dKeap1 were enriched within the nuclei in many tissues, in contrast to the reported cytoplasmic localization of Keap1 and Nrf2 in cultured mammalian cells. CncC and dKeap1 occupied ecdysone-regulated early puffs on polytene chromosomes. Depletion of either CncC or dKeap1 in salivary glands selectively reduced early puff gene transcription. CncC and dKeap1 depletion in the prothoracic gland as well as cncCK6/K6 and dKeap1EY5/EY5 loss of function mutations in embryos reduced ecdysone-biosynthetic gene transcription. In contrast, dKeap1 depletion and the dKeap1EY5/EY5 loss of function mutation enhanced xenobiotic response gene transcription in larvae and embryos, respectively. Depletion of CncC or dKeap1 in the prothoracic gland delayed pupation by decreasing larval ecdysteroid levels. CncC depletion suppressed the premature pupation and developmental arrest caused by constitutive Ras signaling in the prothoracic gland; conversely, constitutive Ras signaling altered the loci occupied by CncC on polytene chromosomes and activated transcription of genes at these loci. The effects of CncC and dKeap1 on both ecdysone-biosynthetic and ecdysone-regulated gene transcription, and the roles of CncC in Ras signaling in the prothoracic gland, establish the functions of these proteins in the neuroendocrine axis that coordinates insect metamorphosis.


Genetics | 2006

Loss-of-function alleles of the JIL-1 histone H3S10 kinase enhance position-effect variegation at pericentric sites in Drosophila heterochromatin.

Xiaomin Bao; Huai Deng; Jørgen Johansen; Jack Girton; Kristen M. Johansen

In this study we show that loss-of-function alleles of the JIL-1 histone H3S10 kinase act as enhancers of position-effect variegation at pericentric sites whereas the gain-of-function JIL-1Su(var)3-1[3] allele acts as a suppressor strongly supporting a functional role for JIL-1 in maintaining euchromatic chromatin and counteracting heterochromatic spreading and gene silencing.


Methods | 2009

Polytene chromosome squash methods for studying transcription and epigenetic chromatin modification in Drosophila using antibodies.

Kristen M. Johansen; Weili Cai; Huai Deng; Xiaomin Bao; Weiguo Zhang; Jack Girton; Jørgen Johansen

The giant polytene chromosomes from Drosophila third instar larval salivary glands provide an important model system for studying the architectural changes in chromatin morphology associated with the process of transcription initiation and elongation. Especially, analysis of the heat shock response has proved useful in correlating chromatin structure remodeling with transcriptional activity. An important tool for such studies is the labeling of polytene chromosome squash preparations with antibodies to the enzymes, transcription factors, or histone modifications of interest. However, in any immunohistochemical experiment there will be advantages and disadvantages to different methods of fixation and sample preparation, the relative merits of which must be balanced. Here we provide detailed protocols for polytene chromosome squash preparation and discuss their relative pros and cons in terms of suitability for reliable antibody labeling and preservation of high resolution chromatin structure.


Genetics | 2006

Loss-Of-Function Alleles of the JIL-1 Kinase Are Strong Suppressors of Position Effect Variegation of the wm4 Allele in Drosophila

Stephanie Lerach; Weiguo Zhang; Xiaomin Bao; Huai Deng; Jack Girton; Jørgen Johansen; Kristen M. Johansen

In this article we show that hypomorphic loss-of-function alleles of the JIL-1 histone H3S10 kinase are strong suppressors of position effect variegation (PEV) of the wm4 allele and that lack of JIL-1 activity can counteract the effect of the dominant enhancer E(var)2-1 on PEV.


Genetics | 2007

Reduced Levels of Su(var)3-9 but Not Su(var)2-5 (HP1) Counteract the Effects on Chromatin Structure and Viability in Loss-of-Function Mutants of the JIL-1 Histone H3S10 Kinase

Huai Deng; Xiaomin Bao; Weiguo Zhang; Jack Girton; Jørgen Johansen; Kristen M. Johansen

It has recently been demonstrated that activity of the essential JIL-1 histone H3S10 kinase is a major regulator of chromatin structure and that it functions to maintain euchromatic domains while counteracting heterochromatization and gene silencing. In the absence of JIL-1 kinase activity, the major heterochromatin markers histone H3K9me2 and HP1 spread in tandem to ectopic locations on the chromosome arms. In this study, we show that the lethality as well as some of the chromosome morphology defects associated with the null JIL-1 phenotype to a large degree can be rescued by reducing the dose of the Su(var)3-9 gene. This effect was observed with three different alleles of Su(var)3-9, strongly suggesting it is specific to Su(var)3-9 and not to second site modifiers. This is in contrast to similar experiments performed with alleles of the Su(var)2-5 gene that codes for HP1 in Drosophila where no genetic interactions were detectable between JIL-1 and Su(var)2-5. Taken together, these findings indicate that while Su(var)3-9 histone methyltransferase activity is a major factor in the lethality and chromatin structure perturbations associated with loss of the JIL-1 histone H3S10 kinase, these effects are likely to be uncoupled from HP1.


Journal of Cell Science | 2011

The epigenetic H3S10 phosphorylation mark is required for counteracting heterochromatic spreading and gene silencing in Drosophila melanogaster

Chao Wang; Weili Cai; Yeran Li; Huai Deng; Xiaomin Bao; Jack Girton; Jørgen Johansen; Kristen M. Johansen

The JIL-1 kinase localizes specifically to euchromatin interband regions of polytene chromosomes and is the kinase responsible for histone H3S10 phosphorylation at interphase. Genetic interaction assays with strong JIL-1 hypomorphic loss-of-function alleles have demonstrated that the JIL-1 protein can counterbalance the effect of the major heterochromatin components on position-effect variegation (PEV) and gene silencing. However, it is unclear whether this was a causative effect of the epigenetic H3S10 phosphorylation mark, or whether the effect of the JIL-1 protein on PEV was in fact caused by other functions or structural features of the protein. By transgenically expressing various truncated versions of JIL-1, with or without kinase activity, and assessing their effect on PEV and heterochromatic spreading, we show that the gross perturbation of polytene chromosome morphology observed in JIL-1 null mutants is unrelated to gene silencing in PEV and is likely to occur as a result of faulty polytene chromosome alignment and/or organization, separate from epigenetic regulation of chromatin structure. Furthermore, the findings provide evidence that the epigenetic H3S10 phosphorylation mark itself is necessary for preventing the observed heterochromatic spreading independently of any structural contributions from the JIL-1 protein.

Collaboration


Dive into the Huai Deng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weili Cai

Iowa State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chao Wang

Iowa State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yeran Li

Iowa State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge