Huai-hu Chuang
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Huai-hu Chuang.
Nature | 1999
Peter M. Zygmunt; Jesper Petersson; David A. Andersson; Huai-hu Chuang; Morten Sørgård; Vincenzo Di Marzo; David Julius; Edward D. Högestätt
The endogenous cannabinoid receptor agonist anandamide is a powerful vasodilator of isolated vascular preparations, but its mechanism of action is unclear. Here we show that the vasodilator response to anandamide in isolated arteries is capsaicin-sensitive and accompanied by release of calcitonin-gene-related peptide (CGRP). The selective CGRP-receptor antagonist 8-37 CGRP (ref. 5), but not the cannabinoid CB1 receptor blocker SR141716A (ref. 7), inhibited the vasodilator effect of anandamide. Other endogenous (2-arachidonylglycerol, palmitylethanolamide) and synthetic (HU 210, WIN 55,212-2, CP 55,940) CB1 and CB2 receptor agonists could not mimic the action of anandamide. The selective ‘vanilloid receptor’ antagonist capsazepine, inhibited anandamide-induced vasodilation and release of CGRP. In patch-clamp experiments on cells expressing the cloned vanilloid receptor (VR1), anandamide induced a capsazepine-sensitive current in whole cells and isolated membrane patches. Our results indicate that anandamide induces vasodilation by activating vanilloid receptors on perivascular sensory nerves and causing release of CGRP. The vanilloid receptor may thus be another molecular target for endogenous anandamide, besides cannabinoid receptors, in the nervous and cardiovascular systems.
Nature | 2004
Sven-Eric Jordt; Diana M. Bautista; Huai-hu Chuang; David D. McKemy; Peter M. Zygmunt; Edward Hogestatt; Ian D. Meng; David Julius
Wasabi, horseradish and mustard owe their pungency to isothiocyanate compounds. Topical application of mustard oil (allyl isothiocyanate) to the skin activates underlying sensory nerve endings, thereby producing pain, inflammation and robust hypersensitivity to thermal and mechanical stimuli. Despite their widespread use in both the kitchen and the laboratory, the molecular mechanism through which isothiocyanates mediate their effects remains unknown. Here we show that mustard oil depolarizes a subpopulation of primary sensory neurons that are also activated by capsaicin, the pungent ingredient in chilli peppers, and by Δ9-tetrahydrocannabinol (THC), the psychoactive component of marijuana. Both allyl isothiocyanate and THC mediate their excitatory effects by activating ANKTM1, a member of the TRP ion channel family recently implicated in the detection of noxious cold. These findings identify a cellular and molecular target for the pungent action of mustard oils and support an emerging role for TRP channels as ionotropic cannabinoid receptors.
Nature | 2001
Huai-hu Chuang; Elizabeth D. Prescott; Haeyoung Kong; Shannon Shields; Sven-Eric Jordt; Allan I. Basbaum; Moses V. Chao; David Julius
Tissue injury generates endogenous factors that heighten our sense of pain by increasing the response of sensory nerve endings to noxious stimuli. Bradykinin and nerve growth factor (NGF) are two such pro-algesic agents that activate G-protein-coupled (BK2) and tyrosine kinase (TrkA) receptors, respectively, to stimulate phospholipase C (PLC) signalling pathways in primary afferent neurons. How these actions produce sensitization to physical or chemical stimuli has not been elucidated at the molecular level. Here, we show that bradykinin- or NGF-mediated potentiation of thermal sensitivity in vivo requires expression of VR1, a heat-activated ion channel on sensory neurons. Diminution of plasma membrane phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) levels through antibody sequestration or PLC-mediated hydrolysis mimics the potentiating effects of bradykinin or NGF at the cellular level. Moreover, recruitment of PLC-γ to TrkA is essential for NGF-mediated potentiation of channel activity, and biochemical studies suggest that VR1 associates with this complex. These studies delineate a biochemical mechanism through which bradykinin and NGF produce hypersensitivity and might explain how the activation of PLC signalling systems regulates other members of the TRP channel family.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Andrew Hinman; Huai-hu Chuang; Diana M. Bautista; David Julius
Allyl isothiocyanate, the pungent principle of wasabi and other mustard oils, produces pain by activating TRPA1, an excitatory ion channel on sensory nerve endings. Isothiocyanates are membrane-permeable electrophiles that form adducts with thiols and primary amines, suggesting that covalent modification, rather than classical lock-and-key binding, accounts for their agonist properties. Indeed, we show that thiol reactive compounds of diverse structure activate TRPA1 in a manner that relies on covalent modification of cysteine residues within the cytoplasmic N terminus of the channel. These findings suggest an unusual paradigm whereby natural products activate a receptor through direct, reversible, and covalent protein modification.
Neuron | 1999
Jennifer L. Whistler; Huai-hu Chuang; Peter Chu; Lily Yeh Jan; Mark von Zastrow
Opiate analgesia, tolerance, and addiction are mediated by drug-induced activation of the mu opioid receptor. A fundamental question in addiction biology is why exogenous opiate drugs have a high liability for inducing tolerance and addiction while native ligands do not. Studies indicate that highly addictive opiate drugs such as morphine are deficient in their ability to induce the desensitization and endocytosis of receptors. Here, we demonstrate that this regulatory mechanism reveals an independent functional property of opiate drugs that can be distinguished from previously established agonist properties. Moreover, this property correlates with agonist propensity to promote physiological tolerance, suggesting a fundamental revision of our understanding of the role of receptor endocytosis in the biology of opiate drug action and addiction.
Neuron | 2004
Huai-hu Chuang; Werner M. Neuhausser; David Julius
TRPM8, a member of the transient receptor potential family of ion channels, depolarizes somatosensory neurons in response to cold. TRPM8 is also activated by the cooling agents menthol and icilin. When exposed to menthol or cold, TRPM8 behaves like many ligand-gated channels, exhibiting rapid activation followed by moderate Ca(2+)-dependent adaptation. In contrast, icilin activates TRPM8 with extremely variable latency followed by extensive desensitization, provided that calcium is present. Here, we show that, to achieve full efficacy, icilin requires simultaneous elevation of cytosolic Ca2+, either via permeation through TRPM8 channels or by release from intracellular stores. Thus, two stimuli must be paired to elicit full channel activation, illustrating the potential for coincidence detection by TRP channels. Determinants of icilin sensitivity map to a region of TRPM8 that corresponds to the capsaicin binding site on the noxious heat receptor TRPV1, suggesting a conserved molecular logic for gating of these thermosensitive channels by chemical agonists.
European Journal of Pharmacology | 2000
Peter M. Zygmunt; Huai-hu Chuang; Pouya Movahed; David Julius; Edward D. Högestätt
The possibility that the anandamide transport inhibitor N-(4-hydroxyphenyl)-5,8,11,14-eicosatetraenamide (AM404), structurally similar to the vanilloid receptor agonists anandamide and capsaicin, may also activate vanilloid receptors and cause vasodilation was examined. AM404 evoked concentration-dependent relaxations in segments of rat isolated hepatic artery contracted with phenylephrine. Relaxations were abolished in preparations pre-treated with capsaicin. The calcitonin-gene related peptide (CGRP) receptor antagonist CGRP-(8-37) also abolished relaxations. The vanilloid receptor antagonist capsazepine inhibited vasodilation by AM404 and blocked AM404-induced currents in patch-clamp experiments on Xenopus oocytes expressing the vanilloid subtype 1 receptor (VR1). In conclusion, AM404 activates native and cloned vanilloid receptors.
Cell | 1997
Huai-hu Chuang; Yuh Nung Jan; Lily Yeh Jan
Inward rectifier K+ channels control the cells membrane potential and neuronal excitability. We report that the IRK3 but not the IRK1 inward rectifier K+ channel activity is inhibited by m1 muscarinic acetylcholine receptor. This m1 modulation cannot be accounted for by protein kinase C, Ca2+, or channel phosphorylation, but can be mimicked by Mg2+. Based on quantitative analyses of IRK3 and two different IRK1 mutant channels bestowed with sensitivity to m1 modulation, we suggest that the resting Mg2+ level causes chronic inhibition of IRK3 channels, and m1 receptor stimulation may lead to an increase of cytoplasmic Mg2+ concentration and further channel inhibition, due to the ability of Mg2+ to lead these channels into a prolonged inactivated state.
Journal of Biological Chemistry | 2011
Ahmed H. Ahmed; Shu Wang; Huai-hu Chuang; Robert E. Oswald
The mechanism by which agonist binding to an ionotropic glutamate receptor leads to channel opening is a central issue in molecular neurobiology. Partial agonists are useful tools for studying the activation mechanism because they produce full channel activation with lower probability than full agonists. Structural transitions that determine the efficacy of partial agonists can provide information on the trigger that begins the channel-opening process. The ligand-binding domain of AMPA receptors is a bilobed structure, and the closure of the lobes is associated with channel activation. One possibility is that partial agonists sterically block full lobe closure but that partial degrees of closure trigger the channel with a lower probability. Alternatively, full lobe closure may be required for activation, and the stability of the fully closed state could determine efficacy with the fully closed state having a lower stability when bound to partial relative to full agonists. Disulfide-trapping experiments demonstrated that even extremely low efficacy ligands such as 6-cyano-7-nitroquinoxaline-2,3-dione can produce a full lobe closure, presumably with low probability. The results are consistent the hypothesis that the efficacy is determined at least in part by the stability of the state in which the lobes are fully closed.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Hui Li; Shu Wang; Alexander Y. Chuang; Bruce E. Cohen; Huai-hu Chuang
The capsaicin receptor TRPV1 is the principal transduction channel for nociception. Excessive TRPV1 activation causes pathological pain. Ideal pain mangement requires selective inhibition of hyperactive pain-sensing neurons, but sparing normal nociception. We sought to determine whether it is possible to use activity-dependent TRPV1 agonists to identify nerves with excessive TRPV1 activity, as well as exploit the TRPV1 pore to deliver charged anesthetics for neuronal silencing. We synthesized a series of permanently charged capsaicinoids and found that one, cap-ET, efficaciously evoked TRPV1-dependent entry of Ca2+ or the large cationic dye YO-PRO-1 comparably to capsaicin, but far smaller electrical currents. Cap-ET–induced YO-PRO-1 transport required permeation of both the agonist and the dye through the TRPV1 pore and could be enhanced by kinase activation or oxidative covalent modification. Moreover, cap-ET reduced capsaicin-induced currents by a voltage-dependent block of the pore. A low dose of cap-ET elicited entry of permanently charged Na+ channel blockers to effectively suppress Na+ currents in sensory neurons presensitized with oxidative chemicals. These results implicate therapeutic potential of these unique TRPV1 agonists exhibiting activity-dependent ion transport but of minimal pain-producing risks.