Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Julius is active.

Publication


Featured researches published by David Julius.


Nature | 1997

The capsaicin receptor : a heat-activated ion channel in the pain pathway

Michael J. Caterina; Mark Schumacher; Makoto Tominaga; Tobias A. Rosen; Jon D. Levine; David Julius

Capsaicin, the main pungent ingredient in ‘hot’ chilli peppers, elicits a sensation of burning pain by selectively activating sensory neurons that convey information about noxious stimuli to the central nervous system. We have used an expression cloning strategy based on calcium influx to isolate a functional cDNA encoding a capsaicin receptor from sensory neurons. This receptor is a non-selective cation channel that is structurally related to members of the TRP family of ion channels. The cloned capsaicin receptor is also activated by increases in temperature in the noxious range, suggesting that it functions as a transducer of painful thermal stimuli in vivo.


Nature | 1999

Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide

Peter M. Zygmunt; Jesper Petersson; David A. Andersson; Huai-hu Chuang; Morten Sørgård; Vincenzo Di Marzo; David Julius; Edward D. Högestätt

The endogenous cannabinoid receptor agonist anandamide is a powerful vasodilator of isolated vascular preparations, but its mechanism of action is unclear. Here we show that the vasodilator response to anandamide in isolated arteries is capsaicin-sensitive and accompanied by release of calcitonin-gene-related peptide (CGRP). The selective CGRP-receptor antagonist 8-37 CGRP (ref. 5), but not the cannabinoid CB1 receptor blocker SR141716A (ref. 7), inhibited the vasodilator effect of anandamide. Other endogenous (2-arachidonylglycerol, palmitylethanolamide) and synthetic (HU 210, WIN 55,212-2, CP 55,940) CB1 and CB2 receptor agonists could not mimic the action of anandamide. The selective ‘vanilloid receptor’ antagonist capsazepine, inhibited anandamide-induced vasodilation and release of CGRP. In patch-clamp experiments on cells expressing the cloned vanilloid receptor (VR1), anandamide induced a capsazepine-sensitive current in whole cells and isolated membrane patches. Our results indicate that anandamide induces vasodilation by activating vanilloid receptors on perivascular sensory nerves and causing release of CGRP. The vanilloid receptor may thus be another molecular target for endogenous anandamide, besides cannabinoid receptors, in the nervous and cardiovascular systems.


Nature | 2001

Molecular mechanisms of nociception

David Julius; Allan I. Basbaum

The sensation of pain alerts us to real or impending injury and triggers appropriate protective responses. Unfortunately, pain often outlives its usefulness as a warning system and instead becomes chronic and debilitating. This transition to a chronic phase involves changes within the spinal cord and brain, but there is also remarkable modulation where pain messages are initiated — at the level of the primary sensory neuron. Efforts to determine how these neurons detect pain-producing stimuli of a thermal, mechanical or chemical nature have revealed new signalling mechanisms and brought us closer to understanding the molecular events that facilitate transitions from acute to persistent pain.


Cell | 2009

Cellular and Molecular Mechanisms of Pain

Allan I. Basbaum; Diana M. Bautista; Grégory Scherrer; David Julius

The nervous system detects and interprets a wide range of thermal and mechanical stimuli, as well as environmental and endogenous chemical irritants. When intense, these stimuli generate acute pain, and in the setting of persistent injury, both peripheral and central nervous system components of the pain transmission pathway exhibit tremendous plasticity, enhancing pain signals and producing hypersensitivity. When plasticity facilitates protective reflexes, it can be beneficial, but when the changes persist, a chronic pain condition may result. Genetic, electrophysiological, and pharmacological studies are elucidating the molecular mechanisms that underlie detection, coding, and modulation of noxious stimuli that generate pain.


Nature | 2002

Identification of a cold receptor reveals a general role for TRP channels in thermosensation

David D. McKemy; Werner M. Neuhausser; David Julius

The cellular and molecular mechanisms that enable us to sense cold are not well understood. Insights into this process have come from the use of pharmacological agents, such as menthol, that elicit a cooling sensation. Here we have characterized and cloned a menthol receptor from trigeminal sensory neurons that is also activated by thermal stimuli in the cool to cold range. This cold- and menthol-sensitive receptor, CMR1, is a member of the TRP family of excitatory ion channels, and we propose that it functions as a transducer of cold stimuli in the somatosensory system. These findings, together with our previous identification of the heat-sensitive channels VR1 and VRL-1, demonstrate that TRP channels detect temperatures over a wide range and are the principal sensors of thermal stimuli in the mammalian peripheral nervous system.


Nature | 2004

Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1

Sven-Eric Jordt; Diana M. Bautista; Huai-hu Chuang; David D. McKemy; Peter M. Zygmunt; Edward Hogestatt; Ian D. Meng; David Julius

Wasabi, horseradish and mustard owe their pungency to isothiocyanate compounds. Topical application of mustard oil (allyl isothiocyanate) to the skin activates underlying sensory nerve endings, thereby producing pain, inflammation and robust hypersensitivity to thermal and mechanical stimuli. Despite their widespread use in both the kitchen and the laboratory, the molecular mechanism through which isothiocyanates mediate their effects remains unknown. Here we show that mustard oil depolarizes a subpopulation of primary sensory neurons that are also activated by capsaicin, the pungent ingredient in chilli peppers, and by Δ9-tetrahydrocannabinol (THC), the psychoactive component of marijuana. Both allyl isothiocyanate and THC mediate their excitatory effects by activating ANKTM1, a member of the TRP ion channel family recently implicated in the detection of noxious cold. These findings identify a cellular and molecular target for the pungent action of mustard oils and support an emerging role for TRP channels as ionotropic cannabinoid receptors.


Cell | 2006

TRPA1 Mediates the Inflammatory Actions of Environmental Irritants and Proalgesic Agents

Diana M. Bautista; Sven-Eric Jordt; Tetsuro Nikai; Pamela R. Tsuruda; Andrew J. Read; Jeannie Poblete; Ebenezer N. Yamoah; Allan I. Basbaum; David Julius

TRPA1 is an excitatory ion channel targeted by pungent irritants from mustard and garlic. TRPA1 has been proposed to function in diverse sensory processes, including thermal (cold) nociception, hearing, and inflammatory pain. Using TRPA1-deficient mice, we now show that this channel is the sole target through which mustard oil and garlic activate primary afferent nociceptors to produce inflammatory pain. TRPA1 is also targeted by environmental irritants, such as acrolein, that account for toxic and inflammatory actions of tear gas, vehicle exhaust, and metabolic byproducts of chemotherapeutic agents. TRPA1-deficient mice display normal cold sensitivity and unimpaired auditory function, suggesting that this channel is not required for the initial detection of noxious cold or sound. However, TRPA1-deficient mice exhibit pronounced deficits in bradykinin-evoked nociceptor excitation and pain hypersensitivity. Thus, TRPA1 is an important component of the transduction machinery through which environmental irritants and endogenous proalgesic agents depolarize nociceptors to elicit inflammatory pain.


Nature | 2001

Identification of the platelet ADP receptor targeted by antithrombotic drugs

Gunther Hollopeter; Hans-Michael Jantzen; Diana Vincent; Georgia Li; Laura J. England; Vanitha Ramakrishnan; Ruey-Bing Yang; Paquita Nurden; Alan T. Nurden; David Julius; Pamela B. Conley

Platelets have a crucial role in the maintenance of normal haemostasis, and perturbations of this system can lead to pathological thrombus formation and vascular occlusion, resulting in stroke, myocardial infarction and unstable angina. ADP released from damaged vessels and red blood cells induces platelet aggregation through activation of the integrin GPIIb–IIIa and subsequent binding of fibrinogen. ADP is also secreted from platelets on activation, providing positive feedback that potentiates the actions of many platelet activators. ADP mediates platelet aggregation through its action on two G-protein-coupled receptor subtypes. The P2Y 1 receptor couples to Gq and mobilizes intracellular calcium ions to mediate platelet shape change and aggregation. The second ADP receptor required for aggregation (variously called P2YADP , P2YAC, P2Ycyc or P2TAC) is coupled to the inhibition of adenylyl cyclase through Gi. The molecular identity of the G i-linked receptor is still elusive, even though it is the target of efficacious antithrombotic agents, such as ticlopidine and clopidogrel and AR-C66096 (ref. 9). Here we describe the cloning of this receptor, designated P2Y12, and provide evidence that a patient with a bleeding disorder has a defect in this gene. Cloning of the P2Y12 receptor should facilitate the development of better antiplatelet agents to treat cardiovascular diseases.


Nature | 1999

A capsaicin-receptor homologue with a high threshold for noxious heat.

Michael J. Caterina; Tobias A. Rosen; Makoto Tominaga; Anthony J. Brake; David Julius

Pain-producing heat is detected by several classes of nociceptive sensory neuron that differ in their thermal response thresholds. The cloned capsaicin receptor, also known as the vanilloid receptor subtype 1 (VR1), is a heat-gated ion channel that has been proposed to mediate responses of small-diameter sensory neurons to moderate (43 °C) thermal stimuli,. VR1 is also activated by protons, indicating that it may participate in the detection of noxious thermal and chemical stimuli in vivo. Here we identify a structurally related receptor, VRL-1, that does not respond to capsaicin, acid or moderate heat. Instead, VRL-1 is activated by high temperatures, with a threshold of ∼52 °C. Within sensory ganglia, VRL-1 is most prominently expressed by a subset of medium- to large-diameter neurons, making it a candidate receptor for transducing high-threshold heat responses in this class of cells. VRL-1 transcripts are not restricted to the sensory nervous system, indicating that this channel may be activated by stimuli other than heat. We propose that responses to noxious heat involve these related, but distinct, ion-channel subtypes that together detect a range of stimulus intensities.


Nature | 2001

Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition.

Huai-hu Chuang; Elizabeth D. Prescott; Haeyoung Kong; Shannon Shields; Sven-Eric Jordt; Allan I. Basbaum; Moses V. Chao; David Julius

Tissue injury generates endogenous factors that heighten our sense of pain by increasing the response of sensory nerve endings to noxious stimuli. Bradykinin and nerve growth factor (NGF) are two such pro-algesic agents that activate G-protein-coupled (BK2) and tyrosine kinase (TrkA) receptors, respectively, to stimulate phospholipase C (PLC) signalling pathways in primary afferent neurons. How these actions produce sensitization to physical or chemical stimuli has not been elucidated at the molecular level. Here, we show that bradykinin- or NGF-mediated potentiation of thermal sensitivity in vivo requires expression of VR1, a heat-activated ion channel on sensory neurons. Diminution of plasma membrane phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) levels through antibody sequestration or PLC-mediated hydrolysis mimics the potentiating effects of bradykinin or NGF at the cellular level. Moreover, recruitment of PLC-γ to TrkA is essential for NGF-mediated potentiation of channel activity, and biochemical studies suggest that VR1 associates with this complex. These studies delineate a biochemical mechanism through which bradykinin and NGF produce hypersensitivity and might explain how the activation of PLC signalling systems regulates other members of the TRP channel family.

Collaboration


Dive into the David Julius's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David D. McKemy

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Werner M. Neuhausser

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Yifan Cheng

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge