Hualan Liu
Virginia Tech
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hualan Liu.
Applied and Environmental Microbiology | 2011
Andrea H. Hartman; Hualan Liu; Stephen B. Melville
ABSTRACT Clostridium perfringens is a Gram-positive anaerobic pathogen which causes many diseases in humans and animals. While some genetic tools exist for working with C. perfringens, a tightly regulated, inducible promoter system is currently lacking. Therefore, we constructed a plasmid-based promoter system that provided regulated expression when lactose was added. This plasmid (pKRAH1) is an Escherichia coli-C. perfringens shuttle vector containing the gene encoding a transcriptional regulator, BgaR, and a divergent promoter upstream of gene bgaL (bgaR-P bgaL ). To measure transcription at the bgaL promoter in pKRAH1, the E. coli reporter gene gusA, encoding β-glucuronidase, was placed downstream of the P bgaL promoter to make plasmid pAH2. When transformed into three strains of C. perfringens, pAH2 exhibited lactose-inducible expression. C. perfringens strain 13, a commonly studied strain, has endogenous β-glucuronidase activity. We mutated gene bglR, encoding a putative β-glucuronidase, and observed an 89% decrease in endogenous activity with no lactose. This combination of a system for regulated gene expression and a mutant of strain 13 with low β-glucuronidase activity are useful tools for studying gene regulation and protein expression in an important pathogenic bacterium. We used this system to express the yfp-pilB gene, comprised of a yellow fluorescent protein (YFP)-encoding gene fused to an assembly ATPase gene involved in type IV pilus-dependent gliding motility in C. perfringens. Expression in the wild-type strain showed that YFP-PilB localized mostly to the poles of cells, but in a pilC mutant it localized throughout the cell, demonstrating that the membrane protein PilC is required for polar localization of PilB.
Journal of Bacteriology | 2013
Hualan Liu; Laurent Bouillaut; Abraham L. Sonenshein; Stephen B. Melville
Clostridium perfringens is an anaerobic Gram-positive pathogen that causes many human and animal diseases, including food poisoning and gas gangrene. C. perfringens lacks flagella but possesses type IV pili (TFP). We have previously shown that C. perfringens can glide across an agar surface in long filaments composed of individual bacteria attached end to end and that two TFP-associated proteins, PilT and PilC, are needed for this. To discover additional gene products that play a role in gliding, we developed a plasmid-based mariner transposon mutagenesis system that works effectively in C. perfringens. More than 10,000 clones were screened for mutants that lacked the ability to move away from the edge of a colony. Twenty-four mutants (0.24%) were identified that fit the criteria. The genes containing insertions that affected gliding motility fell into nine different categories. One gene, CPE0278, which encodes a homolog of the SagA cell wall-dependent endopeptidase, acquired distinct transposon insertions in two independent mutants. sagA mutants were unable to form filaments due to a complete lack of end-to-end connections essential for gliding motility. Complementation of the sagA mutants with a wild-type copy of the gene restored gliding motility. We constructed an in-frame deletion mutation in the sagA gene and found that this mutant had a phenotype similar to those of the transposon mutants. We hypothesize that the sagA mutant strains are unable to form the molecular complexes which are needed to keep the cells in an end-to-end orientation, leading to separation of daughter cells and the inability to carry out gliding motility.
Mbio | 2017
Qinghui Mu; Husen Zhang; Xiaofeng Liao; Kaisen Lin; Hualan Liu; Michael R. Edwards; S. Ansar Ahmed; Ruoxi Yuan; Liwu Li; Thomas E. Cecere; David B. Branson; Jay L. Kirby; Poorna Goswami; Caroline M. Leeth; Kaitlin A. Read; Kenneth J. Oestreich; Miranda D. Vieson; Christopher M. Reilly; Xin M. Luo
BackgroundSystemic lupus erythematosus, characterized by persistent inflammation, is a complex autoimmune disorder with no known cure. Immunosuppressants used in treatment put patients at a higher risk of infections. New knowledge of disease modulators, such as symbiotic bacteria, can enable fine-tuning of parts of the immune system, rather than suppressing it altogether.ResultsDysbiosis of gut microbiota promotes autoimmune disorders that damage extraintestinal organs. Here we report a role of gut microbiota in the pathogenesis of renal dysfunction in lupus. Using a classical model of lupus nephritis, MRL/lpr, we found a marked depletion of Lactobacillales in the gut microbiota. Increasing Lactobacillales in the gut improved renal function of these mice and prolonged their survival. We used a mixture of 5 Lactobacillus strains (Lactobacillus oris, Lactobacillus rhamnosus, Lactobacillus reuteri, Lactobacillus johnsonii, and Lactobacillus gasseri), but L. reuteri and an uncultured Lactobacillus sp. accounted for most of the observed effects. Further studies revealed that MRL/lpr mice possessed a “leaky” gut, which was reversed by increased Lactobacillus colonization. Lactobacillus treatment contributed to an anti-inflammatory environment by decreasing IL-6 and increasing IL-10 production in the gut. In the circulation, Lactobacillus treatment increased IL-10 and decreased IgG2a that is considered to be a major immune deposit in the kidney of MRL/lpr mice. Inside the kidney, Lactobacillus treatment also skewed the Treg-Th17 balance towards a Treg phenotype. These beneficial effects were present in female and castrated male mice, but not in intact males, suggesting that the gut microbiota controls lupus nephritis in a sex hormone-dependent manner.ConclusionsThis work demonstrates essential mechanisms on how changes of the gut microbiota regulate lupus-associated immune responses in mice. Future studies are warranted to determine if these results can be replicated in human subjects.
Nature | 2018
Morgan N. Price; R. Jordan Waters; Mark Callaghan; Jayashree Ray; Hualan Liu; Jennifer V. Kuehl; Ryan A. Melnyk; Jacob S. Lamson; Yumi Suh; Hans K. Carlson; Zuelma Esquivel; Harini Sadeeshkumar; Romy Chakraborty; Grant M. Zane; Benjamin E. Rubin; Judy D. Wall; Axel Visel; James Bristow; Matthew J. Blow; Adam P. Arkin; Adam M. Deutschbauer
One-third of all protein-coding genes from bacterial genomes cannot be annotated with a function. Here, to investigate the functions of these genes, we present genome-wide mutant fitness data from 32 diverse bacteria across dozens of growth conditions. We identified mutant phenotypes for 11,779 protein-coding genes that had not been annotated with a specific function. Many genes could be associated with a specific condition because the gene affected fitness only in that condition, or with another gene in the same bacterium because they had similar mutant phenotypes. Of the poorly annotated genes, 2,316 had associations that have high confidence because they are conserved in other bacteria. By combining these conserved associations with comparative genomics, we identified putative DNA repair proteins; in addition, we propose specific functions for poorly annotated enzymes and transporters and for uncharacterized protein families. Our study demonstrates the scalability of microbial genetics and its utility for improving gene annotations.A large-scale mutagenesis screen identifies mutant phenotypes for over 11,000 protein-coding genes in bacteria that had previously not been assigned a specific function.
Journal of Bacteriology | 2016
Hualan Liu; W. Keith Ray; Richard F. Helm; David L. Popham; Stephen B. Melville
UNLABELLED Heat-resistant endospore formation plays an important role in Clostridium perfringens-associated foodborne illnesses. The spores allow the bacterium to survive heating during normal cooking processes, followed by germination and outgrowth of the bacterium in contaminated foods. To identify proteins associated with germination and other spore functions, a comparative spore membrane proteome analysis of dormant and germinated spores of C. perfringens strain SM101 was performed by using gel-based protein separation and liquid chromatography coupled with matrix-assisted laser desorption ionization-tandem time of flight (MALDI-TOF/TOF) mass spectrometry. A total of 494 proteins were identified, and 117 of them were predicted to be integral membrane or membrane-associated proteins. Among these membrane proteins, 16 and 26 were detected only in dormant and germinated spores, respectively. One protein that was detected only in germinated spore membranes was the enzyme cyanophycinase, a protease that cleaves the polymer cyanophycin, which is composed of l-arginine-poly(l-aspartic acid), to β-Asp-Arg. Genes encoding cyanophycinase and cyanophycin synthetase have been observed in many species of Clostridium, but their role has not been defined. To determine the function of cyanophycin in C. perfringens, a mutation was introduced into the cphA gene, encoding cyanophycin synthetase. In comparison to parent strain SM101, the spores of the mutant strain retained wild-type levels of heat resistance, but fewer spores were made, and they were smaller, suggesting that cyanophycin synthesis plays a role in spore assembly. Although cyanophycin could not be extracted from sporulating C. perfringens cells, an Escherichia coli strain expressing the cphA gene made copious amounts of cyanophycin, confirming that cphA encodes a cyanophycin synthetase. IMPORTANCE Clostridium perfringens is a common cause of food poisoning, and germination of spores after cooking is thought to play a significant role in the disease. How C. perfringens controls the germination process is still not completely understood. We characterized the proteome of the membranes from dormant and germinated spores and discovered that large-scale changes occur after germination is initiated. One of the proteins that was detected after germination was the enzyme cyanophycinase, which degrades the storage compound cyanophycin, which is found in cyanobacteria and other prokaryotes. A cyanophycin synthetase mutant was constructed and found to make spores with altered morphology but normal heat resistance, suggesting that cyanophycin plays a different role in C. perfringens than it does in cyanobacteria.
bioRxiv | 2018
Hualan Liu; Morgan N. Price; Robert Jordan Waters; Jayashree Ray; Hans K. Carlson; Jacob S. Lamson; Romy Chakraborty; Adam P. Arkin; Adam M. Deutschbauer
Molecular genetics is indispensable for interrogating the physiology of bacteria. However, the development of a functional genetic system for any given bacterium can be time-consuming. Here, we present a streamlined approach for identifying an effective transposon mutagenesis system for a new bacterium. Our strategy first involves the construction of hundreds of different transposon vector variants, which we term a “magic pool.” The efficacy of each vector in a magic pool is monitored in parallel using a unique DNA barcode that is introduced into each vector design. Using archived DNA “parts,” we next reassemble an effective vector for making a whole-genome transposon mutant library that is suitable for large-scale interrogation of gene function using competitive growth assays. Here, we demonstrate the utility of the magic pool system to make mutant libraries in five genera of bacteria. ABSTRACT Transposon mutagenesis coupled to next-generation sequencing (TnSeq) is a powerful approach for discovering the functions of bacterial genes. However, the development of a suitable TnSeq strategy for a given bacterium can be costly and time-consuming. To meet this challenge, we describe a part-based strategy for constructing libraries of hundreds of transposon delivery vectors, which we term “magic pools.” Within a magic pool, each transposon vector has a different combination of upstream sequences (promoters and ribosome binding sites) and antibiotic resistance markers as well as a random DNA barcode sequence, which allows the tracking of each vector during mutagenesis experiments. To identify an efficient vector for a given bacterium, we mutagenize it with a magic pool and sequence the resulting insertions; we then use this efficient vector to generate a large mutant library. We used the magic pool strategy to construct transposon mutant libraries in five genera of bacteria, including three genera of the phylum Bacteroidetes. IMPORTANCE Molecular genetics is indispensable for interrogating the physiology of bacteria. However, the development of a functional genetic system for any given bacterium can be time-consuming. Here, we present a streamlined approach for identifying an effective transposon mutagenesis system for a new bacterium. Our strategy first involves the construction of hundreds of different transposon vector variants, which we term a “magic pool.” The efficacy of each vector in a magic pool is monitored in parallel using a unique DNA barcode that is introduced into each vector design. Using archived DNA “parts,” we next reassemble an effective vector for making a whole-genome transposon mutant library that is suitable for large-scale interrogation of gene function using competitive growth assays. Here, we demonstrate the utility of the magic pool system to make mutant libraries in five genera of bacteria.
Journal of Bacteriology | 2014
Hualan Liu; Kristin D. McCord; Jonathon Howarth; David L. Popham; Roderick V. Jensen; Stephen B. Melville
Clostridium perfringens is a Gram-positive anaerobic pathogen of humans and animals. Although they lack flagella, C. perfringens bacteria can still migrate across surfaces using a type of gliding motility that involves the formation of filaments of bacteria lined up in an end-to-end conformation. In strain SM101, hypermotile variants are often found arising from the edges of colonies on agar plates. Hypermotile cells are longer than wild-type cells, and video microscopy of their gliding motility suggests that they form long, thin filaments that move rapidly away from a colony, analogously to swarmer cells in bacteria with flagella. To identify the cause(s) of the hypermotility phenotype, the genome sequences of normal strains and their direct hypermotile derivatives were determined and compared. Strains SM124 and SM127, hypermotile derivatives of strains SM101 and SM102, respectively, contained 10 and 6 single nucleotide polymorphisms (SNPs) relative to their parent strains. While SNPs were located in different genes in the two sets of strains, one feature in common was mutations in cell division genes, an ftsI homolog in strain SM124 (CPR_1831) and a minE homolog in strain SM127 (CPR_2104). Complementation of these mutations with wild-type copies of each gene restored the normal motility phenotype. A model explaining the principles underlying the hypermotility phenotype is presented.
bioRxiv | 2018
Hans K. Carlson; Morgan N. Price; Mark Callaghan; Alex Aaring; Romy Chakraborty; Hualan Liu; Adam P. Arkin; Adam M. Deutschbauer
In extreme environments, toxic compounds restrict which microorganisms persist. However, in complex mixtures of inhibitory compounds, it is challenging to determine which specific compounds cause changes in abundance and prevent some microorganisms from growing. We focused on a contaminated aquifer in Oak Ridge, Tennessee, U.S.A. that has low pH and high concentrations of uranium, nitrate and many other inorganic ions. In the most contaminated wells, the microbial community is enriched in the Rhodanobacter genus. Rhodanobacter relative abundance is positively correlated with low pH and high concentrations of U, Mn, Al, Cd, Zn, Ni, Co, Ca, NO3−, Mg, Cl, SO42−, Sr, K and Ba and we sought to determine which of these correlated parameters are selective pressures that favor the growth of Rhodanobacter over other taxa. Using high-throughput cultivation, we determined that of the ions correlated high Rhodanobacter abundance, only low pH and high U, Mn, Al, Cd, Zn, Co and Ni (a) are selectively inhibitory of a sensitive Pseudomonas isolate from a background well versus a representative resistant Rhodanobacter isolate from a contaminated well, and (b) reach toxic concentrations in the most contaminated wells that can inhibit the sensitive Pseudomonas isolate. We prepared mixtures of inorganic ions representative of the most contaminated wells and verified that few other isolates aside from Rhodanobacter can tolerate these 8 parameters. These results clarify which toxic inorganic ions are causal factors that impact the microbial community at this field site and are not merely correlated with taxonomic shifts.
Current Opinion in Biotechnology | 2018
Hualan Liu; Adam M. Deutschbauer
Biometals | 2015
Evren Kocabas; Hualan Liu; Marcy Hernick