Huamin Han
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Huamin Han.
Scientific Reports | 2015
Ge Zhang; Lei Wang; Honglian Cui; Xiaomin Wang; Ganlin Zhang; Juan Ma; Huamin Han; Wen He; Wei Wang; Yunfeng Zhao; Changzhen Liu; Meiyi Sun; Bin Gao
Genetically modified T cells to recognize tumor-associated antigens by transgenic TCRs or chimeric antigen receptors (CAR) have been successfully applied in clinical trials. However, the disadvantages of either TCR mismatching or the requirement of a surface tumor antigen limit their wider applications in adoptive T cell therapy. A TCR-like chimeric receptor, specific for the melanoma-related gp100/HLA-A2 complex was created by joining a TCR-like antibody GPA7 with the endodomains of CD28 and CD3-ζ chain. This TCR-like CAR, GPA7-28z, was subsequently introduced into human T cells. Retargeted T cells expressing GPA7-28z could exhibit efficient cytotoxic activities against human melanoma cells in vitro in the context with HLA-A2. Furthermore, infusion of GPA7-28z-transduced T cells suppressed melanoma progression in a xenograft mouse model. Redirecting human T cells with TCR-like CARs would be a promising alternative approach to TCR-mediated therapy for melanoma patients, which is also feasible for targeting a variety of other tumor antigens.
Immunology and Cell Biology | 2013
Ge Zhang; Rongzhi Liu; Xuekai Zhu; Lei Wang; Juan Ma; Huamin Han; Xiaomin Wang; Ganlin Zhang; Wen He; Wei Wang; Changzhen Liu; Shenghua Li; Meiyi Sun; Bin Gao
The efficacy of immunotherapy based on natural killer (NK) cells is hampered by intrinsic non‐specific cytotoxicity and insufficient activation of NK cells. Here, we confer the T‐cell receptor‐like (TCR‐like) specificity on NK cells, taking advantage of both the innate and adaptive immune arms of the immune response to generate enhanced anti‐melanoma activity. The TCR‐like antibody (Ab) GPA7 was selected against melanoma‐associated gp100/human leukocyte antigen (HLA)‐A2 complex and then fused to intracellular domain of CD3‐ζ chain. This fusion construct was incorporated into NK‐92MI cell line and expressed as a chimeric antigen receptor on the surface of the cell. The anti‐tumour activity of the transgenic NK‐92MI‐GPA7‐ζ cell line was assessed against melanoma in vitro and in vivo. The engineered NK‐92MI‐GPA7‐ζ cells could recognize melanoma cells in the context of HLA‐A2 and showed enhanced killing of both melanoma cell lines and primary melanoma. Furthermore, adoptively transferred NK‐92MI‐GPA7‐ζ cells significantly suppressed the growth of human melanoma in a xenograft model in mice. Collectively, these results demonstrate that the TCR‐like Ab, GPA7, could redirect NK cells to target the intracellular antigen gp100 and enhance anti‐melanoma activity, providing a promising immunotherapeutic strategy to prevent and treat melanoma.
BMC Complementary and Alternative Medicine | 2011
Huamin Han; Wen He; Wei Wang; Bin Gao
BackgroundAcquired immunodeficiency syndrome (AIDS), which is caused by the human immunodeficiency virus (HIV), is an immunosuppressive disease that results in life-threatening opportunistic infections. The general problems in current therapy include the constant emergence of drug-resistant HIV strains, adverse side effects and the unavailability of treatments in developing countries. Natural products from herbs with the abilities to inhibit HIV-1 life cycle at different stages, have served as excellent sources of new anti-HIV-1 drugs. In this study, we aimed to investigate the anti-HIV-1 activity of aqueous dandelion extract.MethodsThe pseudotyped HIV-1 virus has been utilized to explore the anti-HIV-1 activity of dandelion, the level of HIV-1 replication was assessed by the percentage of GFP-positive cells. The inhibitory effect of the dandelion extract on reverse transcriptase activity was assessed by the reverse transcriptase assay kit.ResultsCompared to control values obtained from cells infected without treatment, the level of HIV-1 replication and reverse transcriptase activity were decreased in a dose-dependent manner. The data suggest that dandelion extract has a potent inhibitory activity against HIV-1 replication and reverse transcriptase activity. The identification of HIV-1 antiviral compounds from Taraxacum officinale should be pursued.ConclusionsThe dandelion extract showed strong activity against HIV-1 RT and inhibited both the HIV-1 vector and the hybrid-MoMuLV/MoMuSV retrovirus replication. These findings provide additional support for the potential therapeutic efficacy of Taraxacum officinale. Extracts from this plant may be regarded as another starting point for the development of an antiretroviral therapy with fewer side effects.
PLOS ONE | 2013
Wen He; Wei Wang; Huamin Han; Lei Wang; Ge Zhang; Bin Gao
Human influenza is a seasonal disease associated with significant morbidity and mortality. The most effective means for controlling infection and thereby reducing morbidity and mortality is vaccination with a three inactivated influenza virus strains mixture, or by intranasal administration of a group of three different live attenuated influenza vaccine strains. Comparing to the inactivated vaccine, the attenuated live viruses allow better elicitation of a long-lasting and broader immune (humoral and cellular) response that represents a naturally occurring transient infection. The cold-adapted (ca) influenza A/AA/6/60 (H2N2) (AA ca) virus is the backbone for the live attenuated trivalent seasonal influenza vaccine licensed in the United States. Similarly, the influenza A components of live-attenuated vaccines used in Russia have been prepared as reassortants of the cold-adapted (ca) H2N2 viruses, A/Leningrad/134/17/57-ca (Len/17) and A/Leningrad/134/47/57-ca (Len/47) along with virulent epidemic strains. However, the mechanism of temperature-sensitive attenuation is largely elusive. To understand how modification at genetic level of influenza virus would result in attenuation of human influenza virus A/PR/8/34 (H1N1,A/PR8), we investigated the involvement of key mutations in the PB1 and/or PB2 genes in attenuation of influenza virus in vitro and in vivo. We have demonstrated that a few of residues in PB1 and PB2 are critical for the phenotypes of live attenuated, temperature sensitive influenza viruses by minigenome assay and real-time PCR. The information of these mutation loci could be used for elucidation of mechanism of temperature-sensitive attenuation and as a new strategy for influenza vaccine development.
PLOS ONE | 2013
Juan Ma; Huamin Han; Deruo Liu; Wei Li; Hongxiang Feng; Xin Xue; Xiaoran Wu; Ge Niu; Ge Zhang; Yunfeng Zhao; Changzhen Liu; Hua Tao; Bin Gao
Anti-HER2/neu antibody therapy has been reported to mediate tumor regression of HER2/ neu+ tumors. Here we demonstrated the expression of HER2 in a wide range of human melanoma cells including a primary culture and seven cell lines, and we further investigated whether HER2 could be served as a target for T cell mediated immunotherapy of human melanoma. Specific cytolytic activity of activated T cells (ATC) armed with anti-CD3 x anti-HER2 bispecific antibody (HER2Bi-Ab) against Malme-3M-luc cells was evaluated by bioluminescent signal generated by luciferase reporter which did not alter HER2 expression or proliferation ability of Malme-3M cells. Contrast with unarmed ATC, increased cytotoxic activity of HER2Bi-armed ATC against Malme-3M-luc cells was observed at effector/target (E/T) ratios of 1:1, 5:1, and 20:1. Moreover, HER2Bi-armed ATC expressed higher level of activation marker CD69 and secreted significantly higher level of IFN-γ than unarmed ATC counterpart at the E/T ratio of 20:1. In addition, compared with anti-HER2 mAb (Herceptin®) or unarmed ATC, HER2Bi-armed ATC showed remarkable suppression effect on Malme-3M-luc tumor cells. Furthermore, in melanoma tumor cell xenograft mice, infusion of HER2Bi-armed ATC successfully inhibited the growth of melanoma tumors. The anti-tumor effect of HER2Bi-armed ATC may provide a promising immunotherapy for melanoma in the future.
PLOS ONE | 2013
Lei Wang; Yanran He; Ge Zhang; Juan Ma; Changzhen Liu; Wen Juan He; Wei Wang; Huamin Han; Bhargavi M. Boruah; Bin Gao
To exploit the biological and pharmacological properties of immunoglobulin constant domain Fc fragment and increase the killing efficacy of T cells, a single chain variable fragment specific to CD3 was fused with Fcab (Fc antigen binding), a mutant Fc fragment with specificity against Human epidermal growth factor receptor 2 (HER2) developed by F-star. The bispecific fusion named as FcabCD3 was expressed by transient transfection in HEK-293T cells and purified by affinity chromatography. Specific cytolytic activity of retargeted T cells to kill HER2 positive SKBR3 cell line was evaluated in vitro. FcabCD3 was able to retarget T cells to kill both Herceptin insensitive Colo205-luc cell line and HER2 low expression MDA-MB-231-luc cell line. Furthermore, FcabCD3 was effective in eliminating the Colo205 tumor established on BALB/c nu/nu mice.
Oncotarget | 2016
Juan Ma; Pan Ma; Chenghai Zhao; Xin Xue; Huamin Han; Changzhen Liu; Hua Tao; Weigang Xiu; Jia Cai; Man Zhang
Targeting B7-H3 over-expressed tumor cells with anti-B7-H3 monoclonal antibodies inhibits tumor growth. Here we demonstrated the expression of B7 family homologue 3 (B7-H3) in a wide range of human tumor cells and further investigated whether B7-H3 could be served as a target for T-cell mediated immunotherapy against human cancers. The specific cytotoxic activity of activated T cell (ATC) armed with a novel anti-CD3 x anti-B7-H3 bispecific antibody (B7-H3Bi-Ab) against tumor cell was evaluated in vitro and in vivo. In contrast with unarmed ATC, an increase in cytotoxic activity of B7-H3Bi-armed ATC against tumor cells was observed at effector/target (E/T) ratios of 5:1, 10:1, and 20:1. Moreover, B7-H3Bi-armed ATC secreted more IFN-γ, TNF-α and IL-2 than unarmed ATC. Infusion of B7-H3Bi-armed ATC inhibited tumor growth in severe combined immunodeficiency (SCID) xenograft models, along with a significant survival benefit. Therefore, treatment with novel B7-H3Bi-armed ATC will be a promising strategy for current cancer immunotherapy.
International Journal of Oncology | 2014
Huamin Han; Juan Ma; Keming Zhang; Wei Li; Changzhen Liu; Yu Zhang; Ganlin Zhang; Pan Ma; Lei Wang; Ge Zhang; Hua Tao; Bin Gao
Targeting HER2 overexpressed breast cancer cells with anti‑HER2 monoclonal antibodies inhibits tumor growth. Here we investigated whether HER2 can serve as a target for T cell-mediated immunotherapy of human colorectal carcinoma. Specific cytolytic activity of activated T cells (ATCs) armed with anti‑CD3 x anti‑HER2 bispecific antibody (HER2Bi-Ab) against HER2+ tumor cells was evaluated by bioluminescent signal generated by luciferase reporter on tumor cells in vitro and in vivo. In contrast to unarmed ATCs, increased cytotoxic activity of HER2Bi-armed ATCs against HER2+ tumor cells was observed. Moreover, HER2Bi-armed ATCs expressed higher level of activation marker CD69 and secreted significantly higher levels of IFN-γ than the unarmed ATC counterpart. In addition, compared with anti‑HER2 mAb (Herceptin®) or unarmed ATC, HER2Bi-armed ATCs showed significant suppression against colorectal carcinoma cells. In colorectal tumor cell xenograft mice, infusion of HER2Bi-armed ATCs successfully inhibited the growth of Colo205-luc cells. The HER2Bi-armed ATCs with anti-tumor effects may provide a promising immunotherapy for colorectal carcinoma in the future.
FEBS Letters | 2013
Yunfeng Zhao; Mengmeng Jin; Juan Ma; Shiqian Zhang; Wei Li; Yuan Chen; Yingsheng Zhou; Hong Tao; Yu Liu; Lei Wang; Huamin Han; Ge Niu; Hua Tao; Changzhen Liu; Bin Gao
EP cleaves mRANK by cleavage assay (View interaction)
PLOS ONE | 2011
Huamin Han; Qingjun Liu; Wen Juan He; Kristy Ong; Xiaoli Liu; Bin Gao
The transfer of foreign genes into mammalian cells has been essential for understanding the functions of genes and mechanisms of genetic diseases, for the production of coding proteins and for gene therapy applications. Currently, the identification and selection of cells that have received transferred genetic material can be accomplished by methods, including drug selection, reporter enzyme detection and GFP imaging. These methods may confer antibiotic resistance, or be disruptive, or require special equipment. In this study, we labeled genetically modified cells with a cell surface biotinylation tag by co-transfecting cells with BirA, a biotin ligase. The modified cells can be quickly isolated for downstream applications using a simple streptavidin bead method. This system can also be used to screen cells expressing two sets of genes from separate vectors.