Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huarong Xu is active.

Publication


Featured researches published by Huarong Xu.


Analytica Chimica Acta | 2013

Determination of polyamine metabolome in plasma and urine by ultrahigh performance liquid chromatography–tandem mass spectrometry method: Application to identify potential markers for human hepatic cancer

Ran Liu; Qing Li; Ran Ma; Xiaohui Lin; Huarong Xu; Kaishun Bi

To evaluate the potential relationship between cancer and polyamine metabolome, a UHPLC-MS/MS method has been developed and validated for simultaneous determination of polyamine precursors, polyamines, polyamine catabolite in human plasma and urine. Polyamine precursors including L-ornithine, lysine, L-arginine and S-adenosyl-L-methionine; polyamines including 1,3-diaminopropane, putrescine, cadaverine, spermidine, spermine, agmatine, N-acetylputrescine, N-acetylspermine and N-acetylspermidine; polyamine catabolite including γ-aminobutyric acid had been determined. The analytes were extracted from plasma and urine samples by protein precipitation procedure, and then separated on a Shim-pack XR-ODS column with 0.05% heptafluorobutyric acid (HFBA) in methanol and 0.05% HFBA in water. The detection was performed on UHPLC-MS/MS system with turbo ion spray source in the positive ion and multiple reaction-monitoring mode. The limits of quantitation for all analytes were within 0.125-31.25 ng mL(-1) in plasma and urine. The absolute recoveries of analytes from plasma and urine were all more than 50%. By means of the method developed, the plasma and urine samples from hepatic cancer patients and healthy age-matched volunteers had been successfully determined. Results showed that putrescine and spermidine in hepatic cancerous plasma were significant higher than those in healthy ones, while spermidine, spermine and N-acetylspermidine in hepatic cancerous urine were significant higher than those in healthy ones. The methods demonstrated the changes of polyamine metabolome occurring in plasma and urine from human subjects with hepatic cancer. It could be a powerful manner to indicate and treat hepatic cancer in its earliest indicative stages.


Journal of Separation Science | 2014

Ultra‐fast LC–ESI‐MS/MS method for the simultaneous determination of six highly toxic Aconitum alkaloids from Aconiti kusnezoffii radix in rat plasma and its application to a pharmacokinetic study

Jingjing Liu; Qing Li; Yidi Yin; Ran Liu; Huarong Xu; Kaishun Bi

A fast, sensitive, and efficient ultra-fast LC-ESI-MS/MS method was developed for the simultaneous quantitation of six highly toxic Aconitum alkaloids, that is, aconitine, mesaconitine, hypaconitine, benzoylaconine, benzoylmesaconine, and benzoylhypaconine, in rat plasma after oral administration of crude ethanol extracts from Aconiti kusnezoffii radix by ultrasonic extraction, reflux extraction for 1 h, and reflux extraction for 3 h, respectively. The separation of six Aconitum alkaloids and aminopyrine (internal standard) was performed on an InertSustain® C18 column, and the quantification of the analytes was performed on a 4000Q ultra-fast LC-MS/MS system with turbo ion spray source in the positive ion and multiple-reaction monitoring mode. Absolute recoveries ranged within 65.06-85.1% for plasma samples. The intra- and interday precision and accuracy of analytes were satisfactory. The methods were validated with sensitivity reaching the lower LOQ for aconitine, mesaconitine, hypaconitine, benzoylaconine, benzoylmesaconine, and benzoylhypaconine, which were 0.025, 0.025, 0.050, 0.025, 0.025, and 0.100 ng/mL, respectively. The method was successfully applied to a pharmacokinetic study of six Aconitum alkaloids in rat plasma after oral administration of crude ethanol extracts from the raw root of Aconitum kusnezoffii Reichb. by three different extraction processes.


Journal of Mass Spectrometry | 2012

A UFLC-MS/MS method for simultaneous quantitation of spinosin, mangiferin and ferulic acid in rat plasma: application to a comparative pharmacokinetic study in normal and insomnic rats.

Bosai He; Qing Li; Ying Jia; Longshan Zhao; Feng Xiao; Chunxiao Lv; Huarong Xu; Xiaohui Chen; Kaishun Bi

Suan-Zao-Ren (SZR) decoction, consisting of Ziziphi Spinosae Semen, Poria, Chuanxiong Rhizoma, Anemarrhenae Rhizoma and Glycyrrhizae Radix Et Rhizoma, is a Traditional Chinese Medicine prescription, clinically used for the treatment of insomnia. The objective of this study was to develop a sensitive and reliable UFLC-MS/MS method for simultaneous quantitation of spinosin, mangiferin and ferulic acid, the main active ingredients in SZR decoction, and to compare the pharmacokinetics of these active ingredients in normal and insomnic rats orally administrated with the prescription. Analytes and IS were separated on a Shim-pack XR-ODS column (75 mm × 3.0 mm, 2.2 µm particles) using gradient elution with the mobile phase consisting of methanol and 0.1% formic acid in water at a flow rate of 0.4 mL/min. The detection of the analytes was performed on 4000Q UFLC-MS/MS system with turbo ion spray source in the negative ion and multiple reaction-monitoring mode. The lower limits of quantification were 1, 6 and 1 ng/mL for spinosin, mangiferin and ferulic acid, respectively. Intra- and inter-day precision and accuracy of analytes were well within acceptance criteria (15%). The mean extraction recoveries of analytes and IS from rats plasma were all more than 85.0%. The validated method has been successfully applied to comparing pharmacokinetic profiles of analytes in rat plasma. The results indicated that no significant difference in pharmacokinetic parameters of ferulic acid was observed between two groups, while absorptions of spinosin and mangiferin in insomnic group were significantly lower than those in normal group.


Journal of Mass Spectrometry | 2013

Rapid analysis of neurotransmitters in rat brain using ultra‐fast liquid chromatography and tandem mass spectrometry: application to a comparative study in normal and insomnic rats

Bosai He; Kaishun Bi; Ying Jia; Jiahong Wang; Chunxiao Lv; Ran Liu; Longshan Zhao; Huarong Xu; Xiaohui Chen; Qing Li

Neurotransmitters and their metabolites in central nervous system were known to play a significant role in sedation and hypnosis. A rapid and sensitive UFLC-MS/MS method for simultaneous determination of serotonin, 5-hydroxyindole acetic acid (5-HIAA), tryptophan (Try), dopamine (DA), norepinephrine (NE), γ-aminobutyric acid (GABA), glutamic acid (Glu) and acetylcholine (Ach) in rat brain without derivatization, ion-pairing reagent or pre-concentration was developed. Analytes and IS were separated on a Inertsil ODS-EP column (150 mm × 4.6 mm, 5 µm particles) and analyzed in a single chromatographic run in less than 9.0 min, using gradient elution with the mobile phase consisting of methanol and 0.01% acetic acid in water at a flow rate of 1.2 ml min(-1) . The detection of the analytes was performed on 4000Q UFLC-MS/MS system with turbo ion spray source in positive ion and multiple reaction monitoring mode. The developed method provided excellent linear calibration curves for the assay of analytes (R(2)  ≥ 0.9915). Limits of quantification were in the range of 1.0 ng ml(-1) to 1.0 µg ml(-1) for the analytes in rat brain. Intra- and inter-day precision and accuracy of analytes were well within acceptance criteria (15%). Mean extraction recoveries of analytes and IS from rat brain were all more than 80.0%. Furthermore, the validated method was successfully applied to comparing profiles of analytes in normal and insomnic rat brains. Results indicated that there were statistically significant differences for serotonin, 5-HIAA, DA, NE, Glu and Ach, but no significant difference for Try and GABA between two groups.


Journal of Mass Spectrometry | 2015

Determination of catecholamines and their metabolites in rat urine by ultra‐performance liquid chromatography–tandem mass spectrometry for the study of identifying potential markers for Alzheimer's disease

Chunxiao Lv; Qing Li; Xujia Liu; Bosai He; Zhenyu Sui; Huarong Xu; Yidi Yin; Ran Liu; Kaishun Bi

In order to investigate the potential links between catecholamines (CAs) and Alzheimers disease (AD), rapid and sensitive ultra-performance liquid chromatography (UPLC)-tandem mass spectrometry (MS/MS) methods in different ionization modes for the quantification of 14 CAs and their metabolites in rat urine without derivatization or complex sample pre-treatments were developed. After addition of the internal standard, isoproterenol, the urine samples were extracted by protein precipitation and separated on an Inertsil ODS-EP column (Shimadzu, Japan) at a flow of 1.0 ml min(-1). Tandem mass spectrometric detection was performed on a 4000Q UPLC-MS/MS in the multiple reaction monitoring mode with turbo ion spray source. Tyrosine, dopamine, noradrenaline, epinephrine, 3-methoxytyramine, normetanephrine and metanephrine were determined in positive mode, while 3,4-dihyroxy-L-phenylalanine (DOPA), 3,4-dihydroxyphenylacetic acid, DL-3,4-dihydroxymandelic acid, DL-3,4-dihydroxyphenyl glycol, homovanillic acid, DL-4-hydroxy-3-methoxymandelic acid and 4-hydroxy-3-methoxy-phenylglycol were determined in negative mode. The methods were examined and were found to be precise and accurate within the linearity range of the assays. The intra-day and inter-day precision and accuracy of the analytes were well within acceptance criteria (±15%). The mean extraction recoveries of analytes and internal standard were all more than 60%. The validated methods have been successfully applied to compare CAs profiles in normal and AD rats. The results indicated the urine levels of DL-3,4-dihydroxyphenyl glycol and 4-hydroxy-3-methoxy-phenylglycol in AD rats were significantly higher than those in the normal group, and the other CAs have an opposite performance. These may attribute to the difference of some enzyme activity between rats with AD and normal. Furthermore, this may be helpful in clinical diagnostics and monitor the efficacy of AD treatment.


Journal of Mass Spectrometry | 2013

A UFLC-MS/MS method with a switching ionization mode for simultaneous quantitation of polygalaxanthone III, four ginsenosides and tumulosic acid in rat plasma: application to a comparative pharmacokinetic study in normal and Alzheimer's disease rats

Chunxiao Lv; Qing Li; Yaowen Zhang; Zhenyu Sui; Bosai He; Huarong Xu; Yidi Yin; Xiaohui Chen; Kaishun Bi

A fast, sensitive and reliable ultra fast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) method has been developed and validated for simultaneous quantitation of polygalaxanthone III (POL), ginsenoside Rb1 (GRb1), ginsenoside Rd (GRd), ginsenoside Re (GRe), ginsenoside Rg1 (GRg1) and tumulosic acid (TUM) in rat plasma after oral administration of Kai-Xin-San, which plays an important role for the treatment of Alzheimers disease (AD). The plasma samples were extracted by liquid-liquid extraction using ethyl acetate-isopropanol (1:1, v/v) with salidrdoside as internal standard (IS). Good chromatographic separation was achieved using gradient elution with the mobile phase consisting of methanol and 0.01% acetic acid in water. The tandem mass spectrometric detection was performed in multiple reaction monitoring mode on 4000Q UFLC-MS/MS system with turbo ion spray source in a negative and positive switching ionization mode. The lower limits of quantification were 0.2-1.5 ng/ml for all the analytes. Both intra-day and inter-day precision and accuracy of analytes were well within acceptance criteria (±15%). The mean absolute extraction recoveries of analytes and IS from rat plasma were all more than 60.0%. The validated method has been successfully applied to comparing pharmacokinetic profiles of analytes in normal and AD rat plasma. The results indicated that no significant differences in pharmacokinetic parameters of GRe, GRg1 and TUM were observed between the two groups, while the absorption of POL and GRd in AD group were significantly higher than those in normal group; moreover, the GRb1 absorbed more rapidly in model group. The different characters of pharmacokinetics might be caused by pharmacological effects of the analytes.


Journal of Separation Science | 2014

Simultaneous quantitation of polygalaxanthone III and four ginsenosides by ultra‐fast liquid chromatography with tandem mass spectrometry in rat and beagle dog plasma after oral administration of Kai‐Xin‐San: Application to a comparative pharmacokinetic study

Chunxiao Lv; Qing Li; Xiaowen Zhang; Bosai He; Huarong Xu; Yidi Yin; Ran Liu; Jingjing Liu; Xiaohui Chen; Kaishun Bi

A fast, selective, and quantitative ultra-fast liquid chromatography with tandem mass spectrometry method has been developed and validated for the simultaneous quantitation of polygalaxanthone III, ginsenoside Rb1, ginsenoside Rd, ginsenoside Re, and ginsenoside Rg1 in the plasma of rat and beagle dog after oral administration of Kai-Xin-San. After addition of the internal standard, salidroside, the plasma samples were extracted by liquid-liquid extraction and separated on a Venusil MP C18 column with methanol/0.01% acetic acid water as mobile phase. The tandem mass spectrometric detection was performed in the multiple reaction monitoring with turbo ion spray source in a switching ionization mode. The method was examined, and found to be precise and accurate with the linearity range of the compounds. The intra- and interday precision and accuracy of the analytes were well within acceptance criteria (±15%). The mean extraction recoveries of analytes and internal standard were all >75.0%. The validated method has been successfully applied to comparing pharmacokinetic profiles of analytes in rat and beagle dog plasma. The results indicated that no significant differences were observed in pharmacokinetic parameters of ginsenoside Rg1, while the others had significant differences, which may due to the different mechanisms of absorption and metabolism.


Journal of Mass Spectrometry | 2013

Simultaneous determination of three alkaloids, four ginsenosides and limonin in the plasma of normal and headache rats after oral administration of Wu‐Zhu‐Yu decoction by a novel ultra fast liquid chromatography‐tandem mass spectrometry method: application to a comparative pharmacokinetics and ethological study

Huarong Xu; Qing Li; Yidi Yin; Chunxiao Lv; Wanyang Sun; Bosai He; Ran Liu; Xiaohui Chen; Kaishun Bi

A novel, sensitive and reliable ultra fast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) method has been developed and validated for simultaneous quantitation of eight main active ingredients (evodiamine, rutaecarpine, dehydroevodiamine, limonin, ginsenoside Rb1, Rd, Re and Rg1) in rat plasma after oral administration of Wu-Zhu-Yu (WZY) decoction, which is a celebrated and widely used Traditional Chinese Medicine formula for the treatment of headache. The analytes and internal standard (IS) were separated on a SHIM-PACK XR-ODS II column, and the detection was performed on a UFLC-MS/MS system with turbo ion spray source. The lower limits of quantification were 1.5, 0.5, 1.0, 2.0, 2.0, 1.0, 0.5 and 0.2 ng ml(-1) for evodiamine, rutaecarpine, dehydroevodiamine, limonin, gensenoside Rb1, Rd, Re and Rg1, respectively. Linearity, accuracy, precision and absolute recoveries of the eight analytes were all within satisfaction. The IS-normalized matrix factor was adopted for assessing the matrix effect and accompanied with a satisfactory result. The validated method has been successfully applied to compare pharmacokinetic profiles of the eight active ingredients in rat plasma between normal and headache rats after administration. Exact pharmaceutical effect of WZY decoction on headache was demonstrated by the ethological response of headache rats induced by nitric oxide donor after administration. The results indicated that the absorption of evodiamine, rutaecarpine, gensenoside Rb1, Re and Rg1 in headache group were significantly higher than those in normal group with similar concentration-time curves while no significant differences existed in limonin and ginsenoside Rd between the two groups.


Journal of Separation Science | 2014

Quality assessment of Cinnamomi Ramulus by the simultaneous analysis of multiple active components using high‐performance thin‐layer chromatography and high‐performance liquid chromatography

Xiaoxue Wu; Jiao He; Huarong Xu; Kaishun Bi; Qing Li

A novel and improved method for the quality assessment of Cinnamomi Ramulus was developed and completely validated. The method was established using fingerprint technology and simultaneous quantitative determination of six main marker compounds including coumarin, cinnamic alcohol, cinnamic acid, 2-methoxy cinnamic acid, cinnamaldehyde, and 2-methoxy cinnamaldehyde in the herbal medicine for the first time. A newly developed high-performance thin-layer chromatography method, which achieved simultaneous definition of five marker components by comparing the colors and retardation factor values of the bands in high-performance thin-layer chromatography, was first used for the authentication of Cinnamomi Ramulus. The fingerprints of 26 batches of herbal samples from different regions of China showed very similar chromatographic patterns that were evaluated by similarity analysis and hierarchical clustering analysis. In addition, six marker compounds were simultaneously determined using single standard to determine multiple components by the relative response factors. Compared with the external standard method, the new quantitative method was validated to determine multiple compounds in 26 batches of Cinnamomi Ramulus samples. All results demonstrated that the simple and rapid method could be effectively utilized for the quality control of Cinnamomi Ramulus.


Journal of Separation Science | 2015

Characterization of multiple constituents in Kai-Xin-San prescription and rat plasma after oral administration by liquid chromatography with quadrupole time-of-flight tandem mass spectrometry.

Xiaowen Zhang; Qing Li; Chunxiao Lv; Huarong Xu; Xujia Liu; Zhenyu Sui; Kaishun Bi

A sensitive and reliable ultra high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry method was established to separate and identify the chemical constituents of Kai-Xin-San prescription, a classic traditional Chinese medicine formula that plays an important role in the treatment of Alzheimers disease. The detection was performed on an Agilent 6520 Accurate-Mass quadrupole time-of-flight mass spectrometer equipped with an electrospray ionization source in negative modes. With the optimized conditions, a total of 54 compounds were identified or tentatively characterized. Out of the 54 compounds, six compounds were identified by comparing the retention time and mass spectrometry data with reference standards, the rest were characterized by analyzing mass spectrometry data and retrieving the literature data. Results indicated ginsenosides, polygala saponins, terpenoids, and oligosaccharide esters were the major effective constituents in Kai-Xin-San prescription. There were 26 prototype ingredients that were assigned for identification in rat plasma. It is also concluded that the developed ultra high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry method with high sensitivity and resolution is suitable for identifying and characterizing the chemical constituents of Kai-Xin-San prescription, and the analysis provides a helpful chemical basis for further research on Kai-Xin-San prescription and the clinical diagnostics of Alzheimers disease.

Collaboration


Dive into the Huarong Xu's collaboration.

Top Co-Authors

Avatar

Kaishun Bi

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Qing Li

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Ran Liu

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Chunxiao Lv

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Bosai He

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Yidi Yin

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Zhenyu Sui

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Xiaohui Chen

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Xujia Liu

Shenyang Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Jingjing Liu

Shenyang Pharmaceutical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge