Hubert Tsui
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hubert Tsui.
Nature Medicine | 2009
Shawn Winer; Yin Chan; Geoffrey Paltser; Dorothy Truong; Hubert Tsui; Jasmine Bahrami; Ruslan Dorfman; Yongqian Wang; Julian Zielenski; Fabrizio G. Mastronardi; Yuko Maezawa; Daniel J. Drucker; Edgar G. Engleman; Daniel Winer; H.-Michael Dosch
Obesity and its associated metabolic syndromes represent a growing global challenge, yet mechanistic understanding of this pathology and current therapeutics are unsatisfactory. We discovered that CD4+ T lymphocytes, resident in visceral adipose tissue (VAT), control insulin resistance in mice with diet-induced obesity (DIO). Analyses of human tissue suggest that a similar process may also occur in humans. DIO VAT-associated T cells show severely biased T cell receptor Vα repertoires, suggesting antigen-specific expansion. CD4+ T lymphocyte control of glucose homeostasis is compromised in DIO progression, when VAT accumulates pathogenic interferon-γ (IFN-γ)-secreting T helper type 1 (TH1) cells, overwhelming static numbers of TH2 (CD4+GATA-binding protein-3 (GATA-3)+) and regulatory forkhead box P3 (Foxp3)+ T cells. CD4+ (but not CD8+) T cell transfer into lymphocyte-free Rag1-null DIO mice reversed weight gain and insulin resistance, predominantly through TH2 cells. In obese WT and ob/ob (leptin-deficient) mice, brief treatment with CD3-specific antibody or its F(ab′)2 fragment, reduces the predominance of TH1 cells over Foxp3+ cells, reversing insulin resistance for months, despite continuation of a high-fat diet. Our data suggest that the progression of obesity-associated metabolic abnormalities is under the pathophysiological control of CD4+ T cells. The eventual failure of this control, with expanding adiposity and pathogenic VAT T cells, can successfully be reversed by immunotherapy.
Nature Medicine | 2011
Daniel A. Winer; Shawn Winer; Lei Shen; Persis P. Wadia; Jason Yantha; Geoffrey Paltser; Hubert Tsui; Ping Wu; Matthew G. Davidson; Michael N. Alonso; Hwei X Leong; Alec J. Glassford; Maria Caimol; Justin A. Kenkel; Thomas F. Tedder; Tracey McLaughlin; David B. Miklos; H-Michael Dosch; Edgar G. Engleman
Chronic inflammation characterized by T cell and macrophage infiltration of visceral adipose tissue (VAT) is a hallmark of obesity-associated insulin resistance and glucose intolerance. Here we show a fundamental pathogenic role for B cells in the development of these metabolic abnormalities. B cells accumulate in VAT in diet-induced obese (DIO) mice, and DIO mice lacking B cells are protected from disease despite weight gain. B cell effects on glucose metabolism are mechanistically linked to the activation of proinflammatory macrophages and T cells and to the production of pathogenic IgG antibodies. Treatment with a B cell–depleting CD20 antibody attenuates disease, whereas transfer of IgG from DIO mice rapidly induces insulin resistance and glucose intolerance. Moreover, insulin resistance in obese humans is associated with a unique profile of IgG autoantibodies. These results establish the importance of B cells and adaptive immunity in insulin resistance and suggest new diagnostic and therapeutic modalities for managing the disease.
Cell | 2006
Rozita Razavi; Yin Chan; F. Nikoo Afifiyan; Xue Jun Liu; Xiang Wan; Jason Yantha; Hubert Tsui; Lan Tang; Sue Tsai; Pere Santamaria; John P. Driver; David V. Serreze; Michael W. Salter; H.-Michael Dosch
In type 1 diabetes, T cell-mediated death of pancreatic beta cells produces insulin deficiency. However, what attracts or restricts broadly autoreactive lymphocyte pools to the pancreas remains unclear. We report that TRPV1(+) pancreatic sensory neurons control islet inflammation and insulin resistance. Eliminating these neurons in diabetes-prone NOD mice prevents insulitis and diabetes, despite systemic persistence of pathogenic T cell pools. Insulin resistance and beta cell stress of prediabetic NOD mice are prevented when TRPV1(+) neurons are eliminated. TRPV1(NOD), localized to the Idd4.1 diabetes-risk locus, is a hypofunctional mutant, mediating depressed neurogenic inflammation. Delivering the neuropeptide substance P by intra-arterial injection into the NOD pancreas reverses abnormal insulin resistance, insulitis, and diabetes for weeks. Concordantly, insulin sensitivity is enhanced in trpv1(-/-) mice, whereas insulitis/diabetes-resistant NODxB6Idd4-congenic mice, carrying wild-type TRPV1, show restored TRPV1 function and insulin sensitivity. Our data uncover a fundamental role for insulin-responsive TRPV1(+) sensory neurons in beta cell function and diabetes pathoetiology.
European Journal of Immunology | 2009
Shawn Winer; Geoff Paltser; Yin Chan; Hubert Tsui; Edgar G. Engleman; Daniel Winer; H.-Michael Dosch
Obesity is associated with numerous inflammatory conditions including atherosclerosis, autoimmune disease and cancer. Although the precise mechanisms are unknown, obesity‐associated rises in TNF‐α, IL‐6 and TGF‐β are believed to contribute. Here we demonstrate that obesity selectively promotes an expansion of the Th17 T‐cell sublineage, a subset with prominent pro‐inflammatory roles. T‐cells from diet‐induced obese mice expand Th17 cell pools and produce progressively more IL‐17 than lean littermates in an IL‐6‐dependent process. The increased Th17 bias was associated with more pronounced autoimmune disease as confirmed in two disease models, EAE and trinitrobenzene sulfonic acid colitis. In both, diet‐induced obese mice developed more severe early disease and histopathology with increased IL‐17+ T‐cell pools in target tissues. The well‐described association of obesity with inflammatory and autoimmune disease is mechanistically linked to a Th17 bias.
Nature Medicine | 2003
Shawn Winer; Hubert Tsui; Ambrose Lau; Aihua Song; Xiaomao Li; Roy K. Cheung; Anastazia Sampson; Fatemeh Afifiyan; Alisha R. Elford; George Jackowski; Dorothy J. Becker; Pere Santamaria; Pamela S. Ohashi; H.-Michael Dosch
Pancreatic islets of Langerhans are enveloped by peri-islet Schwann cells (pSC), which express glial fibrillary acidic protein (GFAP) and S100β. pSC-autoreactive T- and B-cell responses arise in 3- to 4-week-old diabetes-prone non-obese diabetic (NOD) mice, followed by progressive pSC destruction before detectable β-cell death. Humans with probable prediabetes generate similar autoreactivities, and autoantibodies in islet-cell autoantibody (lCA) –positive sera co-localize to pSC. Moreover, GFAP-specific NOD T-cell lines transferred pathogenic peri-insulitis to NOD/severe combined immunodeficient (NOD/SCID) mice, and immunotherapy with GFAP or S100β prevented diabetes. pSC survived in rat insulin promoter Iymphocytic choriomeningitis virus (rip–LCMV) glycoprotein/CD8+ T-cell receptorgp double-transgenic mice with virus-induced diabetes, suggesting that pSC death is not an obligate consequence of local inflammation and β-cell destruction. However, pSC were deleted in spontaneously diabetic NOD mice carrying the CD8+/8.3 T-cell receptor transgene, a T cell receptor commonly expressed in earliest islet infiltrates. Autoimmune targeting of pancreatic nervous system tissue elements seems to be an integral, early part of natural type 1 diabetes.
Disease Models & Mechanisms | 2013
Mario A. Moscarello; Helena Lei; Fabrizio G. Mastronardi; Shawn Winer; Hubert Tsui; Zhen Li; Cameron Ackerley; Li Zhang; Reinout Raijmakers; Dorothy D Wood
SUMMARY Multiple sclerosis (MS) is the most common CNS-demyelinating disease of humans, showing clinical and pathological heterogeneity and a general resistance to therapy. We first discovered that abnormal myelin hypercitrullination, even in normal-appearing white matter, by peptidylarginine deiminases (PADs) correlates strongly with disease severity and might have an important role in MS progression. Hypercitrullination is known to promote focal demyelination through reduced myelin compaction. Here we report that 2-chloroacetamidine (2CA), a small-molecule, PAD active-site inhibitor, dramatically attenuates disease at any stage in independent neurodegenerative as well as autoimmune MS mouse models. 2CA reduced PAD activity and protein citrullination to pre-disease status. In the autoimmune models, disease induction uniformly induced spontaneous hypercitrullination with citrulline+ epitopes targeted frequently. 2CA rapidly suppressed T cell autoreactivity, clearing brain and spinal cord infiltrates, through selective removal of newly activated T cells. 2CA essentially prevented disease when administered before disease onset or before autoimmune induction, making hypercitrullination, and specifically PAD enzymes, a therapeutic target in MS models and thus possibly in MS.
The Lancet | 2002
Shawn Winer; Igor Astsaturov; Roy K. Cheung; Hubert Tsui; Aihua Song; Roger Gaedigk; Daniel A. Winer; Anastasia Sampson; Colin McKerlie; Arthur Bookman; H-Michael Dosch
BACKGROUND Sjögrens syndrome is a common (about 1% of the population) autoimmune disease of salivary and lacrimal glands. Its cause and pathogenesis are poorly understood, and treatments are mostly for symptoms of the disease. ICA69 is a self-antigen expressed in brain, pancreas, salivary, and lacrimal glands. NOD-strain mice are an animal model of spontaneous Sjögrens syndrome. We aimed to assess the role of ICA69 in autoimmunity against Sjögrens syndrome. METHODS We inactivated the genomic ICA69 locus, generated NOD congenic mice that were deficient in ICA69, and assessed development of Sjögrens syndrome. ICA69 autoimmunity was investigated in controls and in patients with primary Sjögrens syndrome or systemic lupus erythematosus, and in various NOD mice, some of which were given an ICA69-directed prototype peptide vaccine. FINDINGS Disruption of the ICA69 locus prevented lacrimal gland disease and greatly reduced salivary gland disease in NOD mice. In healthy NOD mice, ICA69-specific T cells accumulated in lymph nodes that drain salivary tissue. T-cell and B-cell autoreactivity against ICA69 was much the same in patients with primary Sjögrens syndrome, but not in those with systemic lupus erythematosus or in healthy controls. Immunotherapy with a high-affinity mimicry peptide targeting ICA69-specific T-cells reduced established Sjögrens syndrome in wild-type NOD mice in the long term. INTERPRETATION ICA69 is a new autoantigen in primary Sjögrens syndrome that has an important role in progression of disease and could be of diagnostic value. Immunotherapy of primary Sjögrens syndrome is promising, since autoimmunity in NOD mice with Sjögrens syndrome seems to be uniquely susceptible to such treatment even late in disease.
Diabetes | 2015
Xavier S. Revelo; Sue Tsai; Helena Lei; Helen Luck; Magar Ghazarian; Hubert Tsui; Sally Yu Shi; Stephanie A. Schroer; Cynthia T. Luk; Gloria H. Y. Lin; Tak W. Mak; Minna Woo; Shawn Winer; Daniel A. Winer
Obesity-related insulin resistance is associated with an influx of pathogenic T cells into visceral adipose tissue (VAT), but the mechanisms regulating lymphocyte balance in such tissues are unknown. Here we describe an important role for the immune cytotoxic effector molecule perforin in regulating this process. Perforin-deficient mice (Prf1null) show early increased body weight and adiposity, glucose intolerance, and insulin resistance when placed on high-fat diet (HFD). Regulatory effects of perforin on glucose tolerance are mechanistically linked to the control of T-cell proliferation and cytokine production in inflamed VAT. HFD-fed Prf1null mice have increased accumulation of proinflammatory IFN-γ–producing CD4+ and CD8+ T cells and M1-polarized macrophages in VAT. CD8+ T cells from the VAT of Prf1null mice have increased proliferation and impaired early apoptosis, suggesting a role for perforin in the regulation of T-cell turnover during HFD feeding. Transfer of CD8+ T cells from Prf1null mice into CD8-deficient mice (CD8null) resulted in worsening of metabolic parameters compared with wild-type donors. Improved metabolic parameters in HFD natural killer (NK) cell–deficient mice (NKnull) ruled out a role for NK cells as a single source of perforin in regulating glucose homeostasis. The findings support the importance of T-cell function in insulin resistance and suggest that modulation of lymphocyte homeostasis in inflamed VAT is one possible avenue for therapeutic intervention.
Diabetes | 2008
Hubert Tsui; Yin Chan; Lan Tang; Shawn Winer; Roy K. Cheung; Geoffrey Paltser; Thirumahal Selvanantham; Alisha R. Elford; James Ellis; Dorothy J. Becker; Pamela S. Ohashi; Hans-Michael Dosch
OBJECTIVE— Type 1 diabetes reflects autoimmune destruction of β-cells and peri-islet Schwann cells (pSCs), but the mechanisms of pSC death and the T-cell epitopes involved remain unclear. RESEARCH DESIGN AND METHODS— Primary pSC cultures were generated and used as targets in cytotoxic T-lymphocyte (CTL) assays in NOD mice. Cognate interaction between pSC and CD8+ T-cells was assessed by transgenic restoration of β2-microglobulin (β2m) to pSC in NOD.β2m−/− congenics. I-Ag7 and Kd epitopes in the pSC antigen glial fibrillary acidic protein (GFAP) were identified by peptide mapping or algorithms, respectively, and the latter tested by immunotherapy. RESULTS— pSC cultures did not express major histocompatibility complex (MHC) class II and were lysed by ex vivo CTLs from diabetic NOD mice. In vivo, restoration of MHC class I in GFAP-β2m transgenics significantly accelerated adoptively transferred diabetes. Target epitopes in the pSC autoantigen GFAP were mapped to residues 79–87 and 253–261 for Kd and 96–110, 116–130, and 216–230 for I-Ag7. These peptides were recognized spontaneously in NOD spleens as early as 2.5 weeks of age, with proliferative responses peaking around weaning and detectable lifelong. Several were also recognized by T-cells from new-onset type 1 diabetic patients. NOD mouse immunotherapy at 8 weeks with the CD8+ T-cell epitope, GFAP 79–87 but not 253–261, significantly inhibited type 1 diabetes and was associated with reduced γ-interferon production to whole protein GFAP. CONCLUSIONS— Collectively, these findings elucidate a role for pSC-specific CD8+ T-cells in islet inflammation and type 1 diabetes pathogenesis, further supporting neuronal involvement in β-cell demise.
Diabetes | 2010
Jason Yantha; Hubert Tsui; Shawn Winer; Aihua Song; Ping Wu; Geoff Paltser; James Ellis; H.-Michael Dosch
OBJECTIVE Autoimmune target tissues in type 1 diabetes include pancreatic β-cells and peri-islet Schwann cells (pSC)—the latter active participants or passive bystanders in pre-diabetic autoimmune progression. To distinguish between these alternatives, we sought to suppress pSC autoimmunity by transgenic expression of the negative costimulatory molecule B7-H1 in NOD pSC. RESEARCH DESIGN AND METHODS A B7-H1 transgene was placed under control of the glial fibrillary acidic protein (GFAP) promoter. Transgenic and wild-type NOD mice were compared for transgene PD-1 affinities, diabetes development, insulitis, and pSC survival. Mechanistic studies included adoptive type 1 diabetes transfer, B7-H1 blockade, and T-cell autoreactivity and sublineage distribution. RESULTS Transgenic and endogenous B7-H1 bound PD-1 with equal affinities. Unexpectedly, the transgene generated islet-selective CD8+ bias with accelerated rather than suppressed diabetes progression. T-cells of diabetic transgenics transferred type 1 diabetes faster. There were no earlier pSC losses due to conceivable transgene toxicity, but transgenic pSC loss was enhanced by 8 weeks, preceded by elevated GFAP autoreactivity, with high-affinity T-cells targeting the major NOD Kd-GFAP epitope, p253–261. FoxP3+ regulatory T- and CD11c+ dendritic cell pools were unaffected. CONCLUSIONS In contrast with transgenic B7-H1 in NOD mouse β-cells, transgenic B7-H1 in pSC promotes rather than protects from type 1 diabetes. Here, ectopic B7-H1 enhanced the pathogenicity of effector T-cells, demonstrating that pSC can actively impact diabetes progression—likely through modification of intraislet T-cell selection. Although pSC cells emerge as a new candidate for therapeutic targets, caution is warranted with regard to the B7-H1–PD1 axis, where B7-H1 overexpression can lead to accelerated autoimmune disease.