Shawn Winer
University Health Network
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shawn Winer.
Nature Medicine | 2009
Shawn Winer; Yin Chan; Geoffrey Paltser; Dorothy Truong; Hubert Tsui; Jasmine Bahrami; Ruslan Dorfman; Yongqian Wang; Julian Zielenski; Fabrizio G. Mastronardi; Yuko Maezawa; Daniel J. Drucker; Edgar G. Engleman; Daniel Winer; H.-Michael Dosch
Obesity and its associated metabolic syndromes represent a growing global challenge, yet mechanistic understanding of this pathology and current therapeutics are unsatisfactory. We discovered that CD4+ T lymphocytes, resident in visceral adipose tissue (VAT), control insulin resistance in mice with diet-induced obesity (DIO). Analyses of human tissue suggest that a similar process may also occur in humans. DIO VAT-associated T cells show severely biased T cell receptor Vα repertoires, suggesting antigen-specific expansion. CD4+ T lymphocyte control of glucose homeostasis is compromised in DIO progression, when VAT accumulates pathogenic interferon-γ (IFN-γ)-secreting T helper type 1 (TH1) cells, overwhelming static numbers of TH2 (CD4+GATA-binding protein-3 (GATA-3)+) and regulatory forkhead box P3 (Foxp3)+ T cells. CD4+ (but not CD8+) T cell transfer into lymphocyte-free Rag1-null DIO mice reversed weight gain and insulin resistance, predominantly through TH2 cells. In obese WT and ob/ob (leptin-deficient) mice, brief treatment with CD3-specific antibody or its F(ab′)2 fragment, reduces the predominance of TH1 cells over Foxp3+ cells, reversing insulin resistance for months, despite continuation of a high-fat diet. Our data suggest that the progression of obesity-associated metabolic abnormalities is under the pathophysiological control of CD4+ T cells. The eventual failure of this control, with expanding adiposity and pathogenic VAT T cells, can successfully be reversed by immunotherapy.
Nature Medicine | 2011
Daniel A. Winer; Shawn Winer; Lei Shen; Persis P. Wadia; Jason Yantha; Geoffrey Paltser; Hubert Tsui; Ping Wu; Matthew G. Davidson; Michael N. Alonso; Hwei X Leong; Alec J. Glassford; Maria Caimol; Justin A. Kenkel; Thomas F. Tedder; Tracey McLaughlin; David B. Miklos; H-Michael Dosch; Edgar G. Engleman
Chronic inflammation characterized by T cell and macrophage infiltration of visceral adipose tissue (VAT) is a hallmark of obesity-associated insulin resistance and glucose intolerance. Here we show a fundamental pathogenic role for B cells in the development of these metabolic abnormalities. B cells accumulate in VAT in diet-induced obese (DIO) mice, and DIO mice lacking B cells are protected from disease despite weight gain. B cell effects on glucose metabolism are mechanistically linked to the activation of proinflammatory macrophages and T cells and to the production of pathogenic IgG antibodies. Treatment with a B cell–depleting CD20 antibody attenuates disease, whereas transfer of IgG from DIO mice rapidly induces insulin resistance and glucose intolerance. Moreover, insulin resistance in obese humans is associated with a unique profile of IgG autoantibodies. These results establish the importance of B cells and adaptive immunity in insulin resistance and suggest new diagnostic and therapeutic modalities for managing the disease.
European Journal of Immunology | 2009
Shawn Winer; Geoff Paltser; Yin Chan; Hubert Tsui; Edgar G. Engleman; Daniel Winer; H.-Michael Dosch
Obesity is associated with numerous inflammatory conditions including atherosclerosis, autoimmune disease and cancer. Although the precise mechanisms are unknown, obesity‐associated rises in TNF‐α, IL‐6 and TGF‐β are believed to contribute. Here we demonstrate that obesity selectively promotes an expansion of the Th17 T‐cell sublineage, a subset with prominent pro‐inflammatory roles. T‐cells from diet‐induced obese mice expand Th17 cell pools and produce progressively more IL‐17 than lean littermates in an IL‐6‐dependent process. The increased Th17 bias was associated with more pronounced autoimmune disease as confirmed in two disease models, EAE and trinitrobenzene sulfonic acid colitis. In both, diet‐induced obese mice developed more severe early disease and histopathology with increased IL‐17+ T‐cell pools in target tissues. The well‐described association of obesity with inflammatory and autoimmune disease is mechanistically linked to a Th17 bias.
Nature Medicine | 2003
Shawn Winer; Hubert Tsui; Ambrose Lau; Aihua Song; Xiaomao Li; Roy K. Cheung; Anastazia Sampson; Fatemeh Afifiyan; Alisha R. Elford; George Jackowski; Dorothy J. Becker; Pere Santamaria; Pamela S. Ohashi; H.-Michael Dosch
Pancreatic islets of Langerhans are enveloped by peri-islet Schwann cells (pSC), which express glial fibrillary acidic protein (GFAP) and S100β. pSC-autoreactive T- and B-cell responses arise in 3- to 4-week-old diabetes-prone non-obese diabetic (NOD) mice, followed by progressive pSC destruction before detectable β-cell death. Humans with probable prediabetes generate similar autoreactivities, and autoantibodies in islet-cell autoantibody (lCA) –positive sera co-localize to pSC. Moreover, GFAP-specific NOD T-cell lines transferred pathogenic peri-insulitis to NOD/severe combined immunodeficient (NOD/SCID) mice, and immunotherapy with GFAP or S100β prevented diabetes. pSC survived in rat insulin promoter Iymphocytic choriomeningitis virus (rip–LCMV) glycoprotein/CD8+ T-cell receptorgp double-transgenic mice with virus-induced diabetes, suggesting that pSC death is not an obligate consequence of local inflammation and β-cell destruction. However, pSC were deleted in spontaneously diabetic NOD mice carrying the CD8+/8.3 T-cell receptor transgene, a T cell receptor commonly expressed in earliest islet infiltrates. Autoimmune targeting of pancreatic nervous system tissue elements seems to be an integral, early part of natural type 1 diabetes.
Cell Metabolism | 2015
Helen Luck; Sue Tsai; Jason Chung; Xavier Clemente-Casares; Magar Ghazarian; Xavier S. Revelo; Helena Lei; Cynthia T. Luk; Sally Yu Shi; Anuradha Surendra; Julia K. Copeland; Jennifer J. Ahn; David Prescott; Brittany A. Rasmussen; Melissa Hui Yen Chng; Edgar G. Engleman; Stephen E. Girardin; Tony K.T. Lam; Kenneth Croitoru; Shannon E. Dunn; Dana J. Philpott; David S. Guttman; Minna Woo; Shawn Winer; Daniel A. Winer
Obesity has reached epidemic proportions, but little is known about its influence on the intestinal immune system. Here we show that the gut immune system is altered during high-fat diet (HFD) feeding and is a functional regulator of obesity-related insulin resistance (IR) that can be exploited therapeutically. Obesity induces a chronic phenotypic pro-inflammatory shift in bowel lamina propria immune cell populations. Reduction of the gut immune system, using beta7 integrin-deficient mice (Beta7(null)), decreases HFD-induced IR. Treatment of wild-type HFD C57BL/6 mice with the local gut anti-inflammatory, 5-aminosalicyclic acid (5-ASA), reverses bowel inflammation and improves metabolic parameters. These beneficial effects are dependent on adaptive and gut immunity and are associated with reduced gut permeability and endotoxemia, decreased visceral adipose tissue inflammation, and improved antigen-specific tolerance to luminal antigens. Thus, the mucosal immune system affects multiple pathways associated with systemic IR and represents a novel therapeutic target in this disease.
Immunology and Cell Biology | 2012
Shawn Winer; Daniel A. Winer
Over the past decade, chronic inflammation in visceral adipose tissue (VAT) has gained acceptance as a lead promoter of insulin resistance in obesity. A great deal of evidence has pointed to the role of adipokines and innate immune cells, in particular, adipose tissue macrophages, in the regulation of fat inflammation and glucose homeostasis. However, more recently, cells of the adaptive immune system, specifically B and T lymphocytes, have emerged as unexpected promoters and controllers of insulin resistance. These adaptive immune cells infiltrate obesity expanded VAT and through cytokine secretion and macrophage modulation dictate the extent of the local inflammatory response, thereby directly impacting insulin resistance. The remarkable ability of our adaptive immune system to regulate insulin sensitivity and metabolism has unmasked a novel physiological function of this system, and promises new diagnostic and therapeutic strategies to manage the disease. This review highlights critical roles of adipose tissue lymphocytes in governing glucose homeostasis.
Journal of Immunology | 2001
Shawn Winer; Astsaturov I; Roy K. Cheung; Gunaratnam L; Kubiak; Cortez Ma; Mario A. Moscarello; O'Connor Pw; Colin McKerlie; Dorothy J. Becker; Hans-Michael Dosch
Type I diabetes and multiple sclerosis (MS) are distinct autoimmune diseases where T cells target either islet or CNS self-proteins. Unexpectedly, we found that autoreactive T cells in diabetic patients, relatives with high diabetes risk, nonobese diabetic (NOD) mice, and MS patients routinely target classical islet as well as CNS autoantigens. The pathogenic potential of CNS autoreactivity was testable in NOD mice. Pertussis holotoxin, without additional Ags or adjuvants, allowed development of an NOD mouse-specific, autoimmune encephalitis with variable primary-progressive, monophasic, and relapsing-remitting courses. T cells from diabetic donors transferred CNS disease to pertussis toxin-pretreated NOD.scid mice, with accumulation of CD3/IFN-γ transcripts in the brain. Diabetes and MS appear more closely related than previously perceived. NOD mouse-specific, autoimmune encephalitis provides a new MS model to identify factors that determine alternative disease outcomes in hosts with similar autoreactive T cell repertoires.
Journal of Immunology | 2004
Fabrizio G. Mastronardi; Weixian Min; Huimin Wang; Shawn Winer; Michael Dosch; Joan M. Boggs; Mario A. Moscarello
Interferon-β is a mainstay therapy of demyelinating diseases, but its effects are incomplete in human multiple sclerosis and several of its animal models. In this study, we demonstrate dramatic improvements of clinical, histological, and laboratory parameters in in vivo mouse models of demyelinating disease through combination therapy with IFN-β plus vitamin B12 cyanocobalamin {B12CN) in nonautoimmune primary demyelinating ND4 (DM20) transgenics, and in acute and chronic experimental autoimmune encephalomyelitis in SJL mice. Clinical improvement (p values <0.0001) was paralleled by near normal motor function, reduced astrocytosis, and reduced demyelination. IFN-β plus B12CN enhanced in vivo and in vitro oligodendrocyte maturation. In vivo and in vitro altered expression patterns of reduced Notch-1 and enhanced expression of sonic hedgehog and its receptor were consistent with oligodendrocyte maturation and remyelination. IFN-β-B12CN combination therapy may be promising for the treatment of multiple sclerosis.
Cell Metabolism | 2016
Daniel A. Winer; Helen Luck; Sue Tsai; Shawn Winer
Obesity and insulin resistance are associated with chronic inflammation in metabolic tissues such as adipose tissue and the liver. Recently, growing evidence has implicated the intestinal immune system as an important contributor to metabolic disease. Obesity predisposes to altered intestinal immunity and is associated with changes to the gut microbiota, intestinal barrier function, gut-residing innate and adaptive immune cells, and oral tolerance to luminal antigens. Accordingly, the gut immune system may represent a novel therapeutic target for systemic inflammation in insulin resistance. This review discusses the emerging field of intestinal immunity in obesity-related insulin resistance and how it affects metabolic disease.
Cellular and Molecular Life Sciences | 2014
Daniel A. Winer; Shawn Winer; Melissa Hui Yen Chng; Lei Shen; Edgar G. Engleman
Obesity-related insulin resistance is a chronic inflammatory condition that often gives rise to type 2 diabetes (T2D). Much evidence supports a role for pro-inflammatory T cells and macrophages in promoting local inflammation in tissues such as visceral adipose tissue (VAT) leading to insulin resistance. More recently, B cells have emerged as an additional critical player in orchestrating these processes. B cells infiltrate VAT and display functional and phenotypic changes in response to diet-induced obesity. B cells contribute to insulin resistance by presenting antigens to T cells, secreting inflammatory cytokines, and producing pathogenic antibodies. B cell manipulation represents a novel approach to the treatment of obesity-related insulin resistance and potentially to the prevention of T2D. This review summarizes the roles of B cells in governing VAT inflammation and the mechanisms by which these cells contribute to altered glucose homeostasis in insulin resistance.