Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hubertus W. Weijers is active.

Publication


Featured researches published by Hubertus W. Weijers.


IEEE Transactions on Applied Superconductivity | 2009

Recent Developments in 2G HTS Coil Technology

Drew W. Hazelton; V. Selvamanickam; Jason Madison Duval; D. C. Larbalestier; W. D. Markiewicz; Hubertus W. Weijers; R.L. Holtz

Recent developments in 2G HTS coil technology are presented highlighting the ability of 2G HTS wire to function under difficult operating conditions without degradation. The challenges of use in various coil constructions and applications are discussed. Several applications where the conductor is subjected to high stress levels include high field insert coils and rotating machinery. While these applications present different challenges, the ability of the conductor to operate under high stress levels has been demonstrated in both direct sample measurement and test coils. The high winding current density that is available with SuperPowers thin 2G HTS wire was utilized in a high field insert coil demonstration generating central fields in excess of 26.8 T . The ability of the wire to be tailored (stabilization, insulation, ac losses) to fit various operating parameters will also be discussed.


IEEE Transactions on Applied Superconductivity | 2008

High Field Superconducting Solenoids Via High Temperature Superconductors

J. Schwartz; Timothy Effio; Xiaotao Liu; Quang V. Le; A. Mbaruku; H.J. Schneider-Muntau; Tengming Shen; Honghai Song; U.P. Trociewitz; Xiaorong Wang; Hubertus W. Weijers

High-field superconducting solenoids have proven themselves to be of great value to scientific research in a number of fields, including chemistry, physics and biology. Present-day magnets take advantage of the high-field properties of Nb3Sn, but the high-field limits of this conductor are nearly reached and so a new conductor and magnet technology is necessary for superconducting magnets beyond 25 T. Twenty years after the initial discovery of superconductivity at high temperatures in complex oxides, a number of high temperature superconductor (HTS) based conductors are available in sufficient lengths to develop high-field superconducting magnets. In this paper, present day HTS conductor and magnet technologies are discussed. HTS conductors have demonstrated the ability to carry very large critical current densities at magnetic fields of 45 T, and two insert coil demonstrations have surpassed the 25 T barrier. There are, however, many challenges to the implementation of HTS conductors in high-field magnets, including coil manufacturing, electromechanical behavior and quench protection. These issues are discussed and a view to the future is provided.


Applied Physics Letters | 2011

35.4 T field generated using a layer-wound superconducting coil made of (RE)Ba2Cu3O7−x (RE = rare earth) coated conductor

U.P. Trociewitz; Matthieu Dalban-Canassy; Muriel Hannion; David K. Hilton; J. Jaroszynski; Patrick D. Noyes; Y. Viouchkov; Hubertus W. Weijers; D. C. Larbalestier

To explore the limits of layer wound (RE)Ba2Cu3O7-x (REBCO, RE = Rare Earth) coils in a high magnetic field environment > 30 T, a series of small insert coils have been built and characterized in background fields. One of the coils repeatedly reached 35.4 T using a single ~100 m length of REBCO tape wet wound with epoxy and nested in a 31 T background magnet. The coil was quenched safely several times without degradation. Contributing to the success of this coil was the introduction of a thin polyester film that surrounded the conductor. This approach introduces a weak circumferential plane in the coil pack that prevents conductor delamination that has caused degradation of several epoxy impregnated coils previously made by this and other groups.


IEEE Transactions on Applied Superconductivity | 2005

Normal zone initiation and propagation in Y-Ba-Cu-O coated conductors with Cu stabilizer

Xiaorong Wang; Angelo R. Caruso; Marco Breschi; Guomin Zhang; U.P. Trociewitz; Hubertus W. Weijers; J. Schwartz

In the ongoing effort to investigate the normal zone behavior of coated conductors, the effects of a localized, pulsed heat disturbance on a YBa/sub 2/Cu/sub 3/O/sub x//Ni-alloy conductor with Cu stabilizer was investigated. The sample was conduction cooled by a GM cryocooler in a vacuum environment, establishing nearly adiabatic conditions. A NiCr wire heater mounted on the sample was used to provide the heat pulse that initiated the normal zone. Consecutive voltage taps along the length of both sides of the sample monitored the propagation of the normal zone. Several thermocouples were glued on both sides of the sample to measure the temperature profile of the conductor. The minimum quench energies and normal zone propagation velocities were measured at ambient temperatures from 58 K to 79 K and transport current ranging from 30% to 90% of I/sub c/. The voltage and temperature profiles are presented and discussed.


IEEE Transactions on Applied Superconductivity | 2009

The NHMFL Hybrid Magnet Projects

Mark D. Bird; Hongyu Bai; Scott Bole; Jingping Chen; Iain R. Dixon; Hartmut Ehmler; Andrew V. Gavrilin; Thomas A. Painter; Peter Smeibidl; Jack Toth; Hubertus W. Weijers; Ting Xu; Yuhu Zhai

The National High Magnetic Field Laboratory is developing resistive-superconducting hybrid magnets both for internal use and for installation at other facilities. The Tallahassee magnet will have a vertical bore and provide 36 T in a 40-mm bore with 1-ppm homogeneity over a 10-mm diameter spherical volume. The Berlin version will provide a horizontal field of 25 T in a converging-diverging bore configuration suitable for neutron-scattering experiments. A design study is underway for a third magnet for Oak Ridge that will be similar to the Berlin version but provide >30 T. The three magnets will use very similar ~ 13 T Nb3Sn CICC coils for the superconducting outserts. The resistive insert magnets will be different configurations operating at different power levels. In designing the magnet systems we have developed a new numerical model to predict the critical current of Nb3Sn CICCs, tested several conductors in-house and abroad, designed cryostats and refrigeration systems, and developed new resistive magnet technology. An overview of the innovations and present status is presented.


IEEE Transactions on Applied Superconductivity | 2009

Current Sharing and AC Loss Measurements of a Cable-in-Conduit Conductor With

Iain R. Dixon; Mark D. Bird; Pierlugi Bruzzone; Andrey Vladimir Gavrilin; Jun Lu; Boris Stepanov; Hubertus W. Weijers

Performance verification of the Nb3Sn cable-in-conduit conductor (CICC) for the series-connected hybrid magnets at the National High Magnetic Field Laboratory (NHMFL) and Helmholtz Centre Berlin is performed through short sample testing. The superconducting outsert coil consists of three CICC configurations, graded for the applied magnetic field. The CICC for the high field section of the coil is tested in the SULTAN facility at EPFL-CRPP. Measurements of the current sharing temperature at field current combinations comparable to what is expected in the magnet are made. Electromagnetic cycling is performed to investigate the Nb3Sn strand sensitivity to transverse loads. In addition, measurements of AC loss and pressure drop along the conductor are made and compared to thermal-hydraulic computations.


IEEE Transactions on Applied Superconductivity | 2016

{\rm Nb}_{3}{\rm Sn}

Hubertus W. Weijers; W. Denis Markiewicz; Andrew V. Gavrilin; A. Voran; Y. Viouchkov; Scott Gundlach; Patrick D. Noyes; Dima V. Abraimov; Hongyu Bai; Scott T. Hannahs; T. P. Murphy

The 32-T superconducting magnet is envisioned as a 15-T low-temperature superconductor (LTS) magnet combined with a separately powered REBCO high-temperature superconductor (HTS) insert configured as two coil stacks generating 17 T. Progress was made in all aspects of this project and is reported in this work. The design concept, which has been quite stable, is presented, as well as key elements from recent developments such as increased voltage standoff requirements. In both factory testing and installation at the NHMFL, the 15-T/250-mm-bore outer magnet built by Oxford Instruments met all specifications, including a ramp time of 1 h to full field. The test protocol included a deliberately induced full-field quench, releasing 7 MJ. After the helium level recovered, the magnet was ramped again in 1 h to full field, demonstrating full recovery. Helium boiloffs during normal operation and quench were observed, as well as the current and field decay during quench. The latter information serves as one of many inputs for the numerical quench code developed specifically to model quench in coupled LTS-HTS coils. Results from the 32-T quench analysis and implications for quench protection are summarized. All HTS conductor lengths were subjected to an extensive quality assurance (QA) protocol, and SuperPower has now delivered all required conductor lengths within specifications. A summary of the QA data and its implications are presented. The prototype coils, which are very similar in design to the 32-T REBCO coils but of reduced height, have now been impregnated with paraffin to address winding motion observed in previous testing. The prototype test protocol includes a study of the effectiveness of the quench heaters in the HTS coils in both a constant background field as provided by the actual 15-T LTS outer magnet for 32 T and, uniquely, in case the outer magnet is deliberately quenched.


Superconductor Science and Technology | 2015

Strands for the High Field Section of the Series-Connected Hybrid Outsert Coil

Jing Xia; Hongyu Bai; Jun Lu; Andrew V. Gavrilin; Youhe Zhou; Hubertus W. Weijers

In this paper, we employ the anisotropic bulk approximation to successfully implement the electromagnetic modeling of superconducting coils wound with rare-earth-barium-copper-oxide (REBCO) tapes based on the H-formulation, in which the field-dependent critical current density and highly nonlinear characteristic are considered. The total number of turns in the stacks of REBCO pancake coils is up to several thousand. We validate the anisotropic bulk model by comparing the ac loss of a small four-pancake coil between the bulk model and the original model which takes the actual thickness of the superconducting layer into account. Then, the anisotropic bulk model is used to investigate the self-field problem of the REBCO prototype coils of the National High Magnetic Field Laboratory all-superconducting magnet. The field and current density distributions are obtained, and an obvious shielding effect is observed at the top and bottom of the coils. The ac losses in the first and second cycles are calculated. The former is crucial to the design of the cooling system and the latter relates to the routine consumption of the liquid helium. It is found that the ac loss in the first cycle is 2.6 times as large as that in the second cycle. We also study the ac loss dependences on some key parameters (the critical current, n-value and ramp rate of the applied current). It is found that both in the first and second cycles, the ac loss increases with decreasing critical current. Moreover, the influence of the n-value on the ac loss is negligible. In addition, the ac loss decreases logarithmically with increasing ramp rate. However, the average power loss increases linearly with increasing ramp rate. We also compare some analytical estimates with the simulation result for the ac loss of the dual prototype coils. It is found that the results of Beans slab model are closer to the simulation result. The presented model is a useful tool to help us understand electromagnetic behavior and ac losses in REBCO high field coils. It also provides a basis to analyze the mechanical characteristics in the coils in the future.


IEEE Transactions on Applied Superconductivity | 2013

Progress in the Development and Construction of a 32-T Superconducting Magnet

Hongyu Bai; W. D. Markiewicz; Jun Lu; Hubertus W. Weijers

A 32 Tesla, all-superconducting user magnet, which consists of two high temperature superconductor YBCO inner coils producing a field of 17 T in an low temperature superconductor Nb3Sn and NbTi outer magnet producing a background field of 15 T, is being developed at the National High Magnetic Field Laboratory. The YBCO inner coils are pancake-wound with YBCO coated conductor tapes with an interleaved insulation of sol-gel coated stainless steel tapes. The coils are to be cooled directly in liquid helium bath. Heat losses in the windings, such as ac losses during ramping and heat loss in the internal joints, are supposed to be transferred to the coil external surfaces through heat conduction. Thus, thermal conductivity of the coil structure is critical for the internal cooling of the coil and also quench propagation if any. Thermal conductivity measurements were carried out in the radial direction on stacks of alternating YBCO tapes and stainless steel tapes. This paper presents the test results that showed a very low thermal conductivity in the radial direction. For comparison purposes, calculated thermal conductivities in the axial and azimuthal direction are also presented.


IEEE Transactions on Applied Superconductivity | 2013

Electromagnetic modeling of REBCO high field coils by the H-formulation

Andrew V. Gavrilin; Jun Lu; Hongyu Bai; David K. Hilton; W. D. Markiewicz; Hubertus W. Weijers

A 17 T high-temperature superconducting two-coil magnet (insert) to be operated in a 15 T low-temperature superconducting multisection magnet (outsert) is the most demanding part of the National High Magnetic Field Laboratory all-superconducting 32 T magnet system. The HTS coils are of the pancake type and to be wound with REBCO coated conductors/tapes manufactured by SuperPower, Inc. The distribution of AC losses in the HTS windings during the magnet charging/discharging process are computed and analyzed with due regard for the AC loss density dependence on the magnetic field and the field angle. The calculations are based on the measured magnetization of a representative sample against magnetic field and field angle. The results enable determination of heat load on the magnet and its cryogenic system. Since the magnet is of the pool-cooled type, a related helium vapor bubble problem can develop owing to the high field and field gradients, and the diamagnetic susceptibility of helium.

Collaboration


Dive into the Hubertus W. Weijers's collaboration.

Top Co-Authors

Avatar

Hongyu Bai

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Jun Lu

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Mark D. Bird

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iain R. Dixon

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge