Juan Botas
Baylor College of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juan Botas.
Cell | 2003
Hung Kai Chen; Pedro Fernandez-Funez; Summer F. Acevedo; Yung C. Lam; Michael D. Kaytor; Michael H. Fernandez; Alastair Aitken; Efthimios M. C. Skoulakis; Harry T. Orr; Juan Botas; Huda Y. Zoghbi
Spinocerebellar ataxia type 1 (SCA1) is one of several neurological disorders caused by a CAG repeat expansion. In SCA1, this expansion produces an abnormally long polyglutamine tract in the protein ataxin-1. Mutant polyglutamine proteins accumulate in neurons, inducing neurodegeneration, but the mechanism underlying this accumulation has been unclear. We have discovered that the 14-3-3 protein, a multifunctional regulatory molecule, mediates the neurotoxicity of ataxin-1 by binding to and stabilizing ataxin-1, thereby slowing its normal degradation. The association of ataxin-1 with 14-3-3 is regulated by Akt phosphorylation, and in a Drosophila model of SCA1, both 14-3-3 and Akt modulate neurodegeneration. Our finding that phosphatidylinositol 3-kinase/Akt signaling and 14-3-3 cooperate to modulate the neurotoxicity of ataxin-1 provides insight into SCA1 pathogenesis and identifies potential targets for therapeutic intervention.
Cell | 1994
Siu-Kwong Chan; Leah Jaffe; Maria Capovilla; Juan Botas; Richard S. Mann
The Ultrabithorax (Ubx) and Antennapedia (Antp) genes of Drosophila encode homeodomain proteins that have very similar DNA binding specificities in vitro but specify the development of different segmental patterns in vivo. We describe cooperative interactions between Ubx protein and a divergent homeodomain protein, extradenticle (exd), that selectively increases the affinity of Ubx, but not Antp, for a particular DNA target. We also provide evidence that Ubx and exd bind to neighboring sites on this DNA and interact directly to stabilize the DNA-bound form of Ubx. Thus, the ability of different homeotic genes to specify distinct segmental patterns may depend on cooperative interactions with proteins such as exd that selectively modulate their otherwise similar DNA binding specificities.
Cell | 1992
Gilles Vachon; Barbara Cohen; Christine Pfeifle; M.Elaine McGuffin; Juan Botas; Stephen M. Cohen
Homeotic genes encode transcription factors that are thought to specify segmental identity by regulating expression of subordinate genes. Limb development is repressed in the abdominal segments of the Drosophila embryo by the hometic genes of the Bithorax complex (BX-C). Localized expression of the homeobox gene Distal-less (DII) is required for leg development in thoracic segments. We have identified a minimal cis-regulatory enhancer element that directs DII expression in the larval leg primordia. We present evidence that the BX-C proteins repress DII expression in abdominal segments by binding to a small number of specific sites in this element. Mutating these sites eliminates BX-C protein binding and renders the element insensitive to BX-C-mediated repression in vivo. Repression of limb development in the abdomen appears to be controlled at the DII enhancer. Thus DII may serve as a downstream target gene through which the homeotic genes control abdominal segment identity in the Drosophila embryo.
Cell | 2006
Yung C. Lam; Aaron B. Bowman; Paymaan Jafar-Nejad; Janghoo Lim; Ronald Richman; John D. Fryer; Eric D. Hyun; Lisa A. Duvick; Harry T. Orr; Juan Botas; Huda Y. Zoghbi
Spinocerebellar ataxia type 1 (SCA1) is one of several neurodegenerative diseases caused by expansion of a polyglutamine tract in the disease protein, in this case, ATAXIN-1 (ATXN1). A key question in the field is whether neurotoxicity is mediated by aberrant, novel interactions with the expanded protein or whether its wild-type functions are augmented to a deleterious degree. We examined soluble protein complexes from mouse cerebellum and found that the majority of wild-type and expanded ATXN1 assembles into large stable complexes containing the transcriptional repressor Capicua. ATXN1 directly binds Capicua and modulates Capicua repressor activity in Drosophila and mammalian cells, and its loss decreases the steady-state level of Capicua. Interestingly, the S776A mutation, which abrogates the neurotoxicity of expanded ATXN1, substantially reduces the association of mutant ATXN1 with Capicua in vivo. These data provide insight into the function of ATXN1 and suggest that SCA1 neuropathology depends on native, not novel, protein interactions.
Cell | 2005
Hiroshi Tsuda; Hamed Jafar-Nejad; Akash J. Patel; Yaling Sun; Hung Kai Chen; Matthew F. Rose; Koen J. T. Venken; Juan Botas; Harry T. Orr; Hugo J. Bellen; Huda Y. Zoghbi
Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disease caused by an expanded glutamine tract in human Ataxin-1 (hAtx-1). The expansion stabilizes hAtx-1, leading to its accumulation. To understand how stabilized hAtx-1 induces selective neuronal degeneration, we studied Drosophila Atx-1 (dAtx-1), which has a conserved AXH domain but lacks a polyglutamine tract. Overexpression of hAtx-1 in fruit flies produces phenotypes similar to those of dAtx-1 but different from the polyglutamine peptide alone. We show that the Drosophila and mammalian transcription factors Senseless/Gfi-1 interact with Atx-1s AXH domain. In flies, overexpression of Atx-1 inhibits sensory-organ development by decreasing Senseless protein. Similarly, overexpression of wild-type and glutamine-expanded hAtx-1 reduces Gfi-1 levels in Purkinje cells. Deletion of the AXH domain abolishes the effects of glutamine-expanded hAtx-1 on Senseless/Gfi-1. Interestingly, loss of Gfi-1 mimics SCA1 phenotypes in Purkinje cells. These results indicate that the Atx-1/Gfi-1 interaction contributes to the selective Purkinje cell degeneration in SCA1.
Cell | 1994
Maria Capovilla; Mary L. Brandt; Juan Botas
Drosophila homeotic genes encode transcription factors thought to control segmental identity by regulating expression of largely unknown target genes. The formation of the second midgut constriction requires the Ultrabithorax (Ubx) and abdominal-A (abd-A) homeotic genes and decapentaplegic (dpp), a gene encoding a member of the TGF beta family of proteins. We identified a 674 bp enhancer of dpp controlling its expression in the second constriction domain of the visceral mesoderm (parasegment 7). Normal enhancer function requires positive regulation by Ubx and negative regulation by abd-A. This enhancer contains UBX- and ABD-A-binding sites defined in vitro. By generating complementary alterations of the binding sites and the binding specificity of UBX, we show that Ubx directly regulates dpp expression. These regulatory interactions are relevant to normal development, because a transgene made with this enhancer driving a dpp transcription unit rescues the second midgut constriction and larval lethality phenotypes of dpps mutations.
Journal of Biological Chemistry | 2006
Ismael Al-Ramahi; Yung C. Lam; Hung Kai Chen; Beatrice De Gouyon; Minghang Zhang; Alma M. Perez; Joana Branco; Maria de Haro; Cam Patterson; Huda Y. Zoghbi; Juan Botas
CHIP (C terminus of Hsc-70 interacting protein) is an E3 ligase that links the protein folding machinery with the ubiquitin-proteasome system and has been implicated in disorders characterized by protein misfolding and aggregation. Here we investigate the role of CHIP in protecting from ataxin-1-induced neurodegeneration. Ataxin-1 is a polyglutamine protein whose expansion causes spinocerebellar ataxia type-1 (SCA1) and triggers the formation of nuclear inclusions (NIs). We find that CHIP and ataxin-1 proteins directly interact and co-localize in NIs both in cell culture and SCA1 postmortem neurons. CHIP promotes ubiquitination of expanded ataxin-1 both in vitro and in cell culture. The Hsp70 chaperone increases CHIP-mediated ubiquitination of ataxin-1 in vitro, and the tetratricopeptide repeat domain, which mediates CHIP interactions with chaperones, is required for ataxin-1 ubitiquination in cell culture. Interestingly, CHIP also interacts with and ubiquitinates unexpanded ataxin-1. Overexpression of CHIP in a Drosophila model of SCA1 decreases the protein steady-state levels of both expanded and unexpanded ataxin-1 and suppresses their toxicity. Finally we investigate the ability of CHIP to protect against toxicity caused by expanded polyglutamine tracts in different protein contexts. We find that CHIP is not effective in suppressing the toxicity caused by a bare 127Q tract with only a short hemaglutinin tag, but it is very efficient in suppressing toxicity caused by a 128Q tract in the context of an N-terminal huntingtin backbone. These data underscore the importance of the protein framework for modulating the effects of polyglutamine-induced neurodegeneration.
Neuron | 2012
Dyna I. Shirasaki; Erin R. Greiner; Ismael Al-Ramahi; Michelle Gray; Pinmanee Boontheung; Daniel H. Geschwind; Juan Botas; Giovanni Coppola; Steve Horvath; Joseph A. Loo; X. William Yang
We used affinity-purification mass spectrometry to identify 747 candidate proteins that are complexed with Huntingtin (Htt) in distinct brain regions and ages in Huntingtons disease (HD) and wild-type mouse brains. To gain a systems-level view of the Htt interactome, we applied Weighted Correlation Network Analysis to the entire proteomic data set to unveil a verifiable rank of Htt-correlated proteins and a network of Htt-interacting protein modules, with each module highlighting distinct aspects of Htt biology. Importantly, the Htt-containing module is highly enriched with proteins involved in 14-3-3 signaling, microtubule-based transport, and proteostasis. Top-ranked proteins in this module were validated as Htt interactors and genetic modifiers in an HD Drosophila model. Our study provides a compendium of spatiotemporal Htt-interacting proteins in the mammalian brain and presents an approach for analyzing proteomic interactome data sets to build in vivo protein networks in complex tissues, such as the brain.
Genome Biology | 2002
Casey M. Bergman; Barret D. Pfeiffer; Diego E. Rincon-Limas; Roger A. Hoskins; Andreas Gnirke; Chris Mungall; Adrienne M. Wang; Brent Kronmiller; Joanne Pacleb; Soo Park; Mark Stapleton; Kenneth H. Wan; Reed A. George; Pieter J. de Jong; Juan Botas; Gerald M. Rubin; Susan E. Celniker
BackgroundIt is widely accepted that comparative sequence data can aid the functional annotation of genome sequences; however, the most informative species and features of genome evolution for comparison remain to be determined.ResultsWe analyzed conservation in eight genomic regions (apterous, even-skipped, fushi tarazu, twist, and Rhodopsins 1, 2, 3 and 4) from four Drosophila species (D. erecta, D. pseudoobscura, D. willistoni, and D. littoralis) covering more than 500 kb of the D. melanogaster genome. All D. melanogaster genes (and 78-82% of coding exons) identified in divergent species such as D. pseudoobscura show evidence of functional constraint. Addition of a third species can reveal functional constraint in otherwise non-significant pairwise exon comparisons. Microsynteny is largely conserved, with rearrangement breakpoints, novel transposable element insertions, and gene transpositions occurring in similar numbers. Rates of amino-acid substitution are higher in uncharacterized genes relative to genes that have previously been studied. Conserved non-coding sequences (CNCSs) tend to be spatially clustered with conserved spacing between CNCSs, and clusters of CNCSs can be used to predict enhancer sequences.ConclusionsOur results provide the basis for choosing species whose genome sequences would be most useful in aiding the functional annotation of coding and cis-regulatory sequences in Drosophila. Furthermore, this work shows how decoding the spatial organization of conserved sequences, such as the clustering of CNCSs, can complement efforts to annotate eukaryotic genomes on the basis of sequence conservation alone.
Current Opinion in Cell Biology | 1993
Juan Botas
HOM/Hox genes are master regulatory switches that specify axial identity and control the growth and differentiation of groups of cells related by position. HOM/Hox genes function combinatorially and hierarchically to specify cell fate. Some of the genes they regulate and that mediate specific identify functions have been identified. Research in Drosophila has shown that HOM genes are continuously required during development for correct axial identity.