Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hugh C. Harris is active.

Publication


Featured researches published by Hugh C. Harris.


The Astronomical Journal | 2003

The USNO-B Catalog

David G. Monet; Stephen E. Levine; Blaise Canzian; Harold D. Ables; Alan R. Bird; Conard C. Dahn; Harry H. Guetter; Hugh C. Harris; Arne A. Henden; S. K. Leggett; Harold F. Levison; Christian B. Luginbuhl; Joan Martini; Alice K. B. Monet; Jeffrey A. Munn; Jeffrey R. Pier; Albert R. Rhodes; Betty Riepe; Stephen Sell; Ronald C. Stone; Frederick J. Vrba; Richard L. Walker; Gart Westerhout; Robert J. Brucato; I. Neill Reid; William Schoening; M. Hartley; Mike Read; Sara Tritton

USNO-B is an all-sky catalog that presents positions, proper motions, magnitudes in various optical passbands, and star/galaxy estimators for 1,042,618,261 objects derived from 3,643,201,733 separate observations. The data were obtained from scans of 7435 Schmidt plates taken for the various sky surveys during the last 50 years. USNO-B1.0 is believed to provide all-sky coverage, completeness down to V = 21, 02 astrometric accuracy at J2000, 0.3 mag photometric accuracy in up to five colors, and 85% accuracy for distinguishing stars from nonstellar objects. A brief discussion of various issues is given here, but the actual data are available from the US Naval Observatory Web site and others.


The Astrophysical Journal | 2008

The Milky Way Tomography with SDSS. II. Stellar Metallicity

Željko Ivezić; Branimir Sesar; Mario Juric; Nicholas A. Bond; Julianne J. Dalcanton; Constance M. Rockosi; Brian Yanny; Heidi Jo Newberg; Timothy C. Beers; Carlos Allende Prieto; Ron Wilhelm; Young Sun Lee; Thirupathi Sivarani; John E. Norris; Coryn A. L. Bailer-Jones; Paola Re Fiorentin; David J. Schlegel; Alan Uomoto; Robert H. Lupton; Gillian R. Knapp; James E. Gunn; Kevin R. Covey; Gajus A. Miknaitis; Mamoru Doi; M. Tanaka; Masataka Fukugita; Steve Kent; Douglas P. Finkbeiner; Jeffrey A. Munn; Jeffrey R. Pier

In addition to optical photometry of unprecedented quality, the Sloan Digital Sky Survey (SDSS) is producing a massive spectroscopic database which already contains over 280,000 stellar spectra. Using eectiv e temperature and metallicity derived from SDSS spectra for 60,000 F and G type main sequence stars (0:2 < g r < 0:6), we develop polynomial models, reminiscent of traditional methods based on the UBV photometry, for estimating these parameters from the SDSS u g and g r colors. These estimators reproduce SDSS spectroscopic parameters with a root-mean-square scatter of 100 K for eectiv e temperature, and 0.2 dex for metallicity (limited by photometric errors), which are similar to random and systematic uncertainties in spectroscopic determinations. We apply this method to a photometric catalog of coadded SDSS observations and study the photometric metallicity distribution of 200,000 F and G type stars observed in 300 deg 2 of high Galactic latitude sky. These deeper (g < 20:5) and photometrically precise ( 0.01 mag) coadded data enable an accurate measurement of the unbiased metallicity distribution for a complete volume-limited sample of stars at distances between 500 pc and 8 kpc. The metallicity distribution can be exquisitely modeled using two components with a spatially varying number ratio, that correspond to disk and halo. The best-t number ratio of the two components is consistent with that implied by the decomposition of stellar counts proles into exponential disk and power-law halo components by Juri c et al. (2008). The two components also possess the kinematics expected for disk and halo stars. The metallicity of the halo component can be modeled as a spatially invariant Gaussian distribution with a mean of [F e=H] = 1:46 and a standard deviation of 0.3 dex. The disk metallicity distribution is non-Gaussian, with a remarkably small scatter (rms 0.16 dex) and the median smoothly decreasing with distance from the plane from 0:6 at 500 pc to 0:8 beyond several kpc. Similarly, we nd using proper motion measurements that a nonGaussian rotational velocity distribution of disk stars shifts by 50 km/s as the distance from the plane increases from 500 pc to several kpc. Despite this similarity, the metallicity and rotational velocity distributions of disk stars are not correlated (Kendall’s = 0:017 0:018). This absence of a correlation between metallicity and kinematics for disk stars is in a conict with the traditional decomposition in terms of thin and thick disks, which predicts a strong correlation ( = 0:30 0:04) at 1 kpc from the mid-plane. Instead, the variation of the metallicity and rotational velocity distributions can be modeled using non-Gaussian functions that retain their shapes and only shift as the distance from the mid-plane increases. We also study the metallicity distribution using a shallower (g < 19:5) but much larger sample of close to three million stars in 8500 sq. deg. of sky included in SDSS Data Release 6. The large sky coverage enables the detection of coherent substructures in the kinematics{ metallicity space, such as the Monoceros stream, which rotates faster than the LSR, and has a median metallicity of [F e=H] = 0:95, with an rms scatter of only 0.15 dex. We extrapolate our results to the performance expected from the Large Synoptic Survey Telescope (LSST) and estimate that LSST will obtain metallicity measurements accurate to 0.2 dex or better, with proper motion measurements accurate to 0.2-0.5 mas/yr, for about 200 million F/G dwarf stars within a distance limit of 100 kpc (g < 23:5). Subject headings: methods: data analysis | stars: statistics | Galaxy: halo, kinematics and dynamics, stellar content, structure


The Astronomical Journal | 2002

Astrometry and Photometry for Cool Dwarfs and Brown Dwarfs

Conard C. Dahn; Hugh C. Harris; Frederick J. Vrba; Harry H. Guetter; Blaise Canzian; Arne A. Henden; Stephen E. Levine; Christian B. Luginbuhl; Alice K. B. Monet; David G. Monet; Jeffrey R. Pier; Ronald C. Stone; Richard L. Walker; Adam J. Burgasser; John E. Gizis; J. Davy Kirkpatrick; James Liebert; I. Neill Reid

Trigonometric parallax determinations are presented for 28 late-type dwarfs and brown dwarfs, including eight M dwarfs with spectral types between M7 and M9.5, 17 L dwarfs with spectral types between L0 and L8, and three T dwarfs. Broadband photometry at CCD wavelengths (VRIz*) and/or near-IR wavelengths (JHK) is presented for these objects and for 24 additional late-type dwarfs. Supplemented with astrometry and photometry from the literature, including 10 L and two T dwarfs with parallaxes established by association with bright, usually Hipparcos primaries, this material forms the basis for studying various color-color and color?absolute magnitude relations. The I-J color is a good predictor of absolute magnitude for late M and L dwarfs. MJ becomes monotonically fainter with I-J color and with spectral type through late L dwarfs, then brightens for early T dwarfs. The combination of z*JK colors alone can be used to classify late M, early L, and T dwarfs accurately, as well as to predict their absolute magnitudes, but is less effective at untangling the scatter among mid- and late L dwarfs. The mean tangential velocity of these objects is found to be slightly less than that for dM stars in the solar neighborhood, consistent with a sample with a mean age of several Gyr. Using colors to estimate bolometric corrections and models to estimate stellar radii, effective temperatures are derived. The latest L dwarfs are found to have Teff ~ 1360 K.


The Astronomical Journal | 1992

U.S. Naval Observatory CCD parallaxes of faint stars. I - Program description and first results

David G. Monet; Conard C. Dahn; Frederick J. Vrba; Hugh C. Harris; Jeffrey R. Pier; Christian B. Luginbuhl; Harold D. Ables

The U.S. Naval Observatory CCD trigonometric parallax program is described in detail, including the instrumentation employed, observing procedures followed, and reduction procedures applied. Astrometric results are presented for 72 stars ranging in apparent brightness from V = 15.16 to 19.58. Photometry (V and V−I on the Kron-Cousins system) is presented for the parallax stars and for all 426 individual reference stars employed in the astrometric solutions. Corrections for differential color refraction, calibrated to the observed V−I colors, have been applied to all astrometric measures


The Astronomical Journal | 2002

Characterization of M,L and T dwarfs in the Sloan Digital Sky Survey

Suzanne L. Hawley; Kevin R. Covey; Gillian R. Knapp; David A. Golimowski; Xiaohui Fan; Scott F. Anderson; James E. Gunn; Hugh C. Harris; Željko Ivezić; Gary M. Long; Robert H. Lupton; P. McGehee; Vijay K. Narayanan; Eric W. Peng; David J. Schlegel; Donald P. Schneider; Emily Y. Spahn; Michael A. Strauss; Paula Szkody; Zlatan I. Tsvetanov; Lucianne M. Walkowicz; J. Brinkmann; Michael Harvanek; Gregory S. Hennessy; S. J. Kleinman; Jurek Krzesinski; Dan Long; Eric H. Neilsen; Peter R. Newman; Atsuko Nitta

An extensive sample of M, L, and T dwarfs identified in the Sloan Digital Sky Survey (SDSS) has been compiled. The sample of 718 dwarfs includes 677 new objects (629 M dwarfs and 48 L dwarfs), together with 41 that have been previously published. All new objects and some of the previously published ones have new optical spectra obtained either with the SDSS spectrographs or with the Apache Point Observatory 3.5 m ARC telescope. Spectral types and SDSS colors are available for all objects; approximately 35% also have near-infrared magnitudes measured by 2MASS (Two Micron All Sky Survey) or on the Mauna Kea system. We use this sample to characterize the color–spectral type and color-color relations of late-type dwarfs in the SDSS filters and to derive spectroscopic and photometric parallax relations for use in future studies of the luminosity and mass functions based on SDSS data. We find that the i* - z* and i* - J colors provide good spectral type and absolute magnitude (Mi*) estimates for M and L dwarfs. Our distance estimates for the current sample indicate that SDSS is finding early M dwarfs out to ~1.5 kpc, L dwarfs to ~100 pc, and T dwarfs to ~20 pc. The T dwarf photometric data show large scatter and are therefore less reliable for spectral type and distance estimation.


Astrophysical Journal Supplement Series | 2006

A Catalog of Spectroscopically Confirmed White Dwarfs from the Sloan Digital Sky Survey Data Release 4

Daniel J. Eisenstein; James Liebert; Hugh C. Harris; Scott J. Kleinman; Atsuko Nitta; Nicole M. Silvestri; Scott A. Anderson; John C. Barentine; Howard J. Brewington; J. Brinkmann; Michael Harvanek; Jurek Krzesinski; Eric H. Neilsen; Dan Long; Donald P. Schneider; Stephanie A. Snedden

We present a catalog of 9316 spectroscopically confirmed white dwarfs from the Sloan Digital Sky Survey Data Release 4. We have selected the stars through photometric cuts and spectroscopic modeling, backed up by a set of visual inspections. About 6000 of the stars are new discoveries, roughly doubling the number of spectroscopically confirmed white dwarfs. We analyze the stars by performing temperature and surface gravity fits to grids of pure hydrogen and helium atmospheres. Among the rare outliers are a set of presumed helium-core DA white dwarfs with estimated masses below 0.3 M☉, including two candidates that may be the lowest-mass yet found. We also present a list of 928 hot subdwarfs.


Astrophysical Journal Supplement Series | 2004

Efficient photometric selection of quasars from the Sloan Digital Sky Survey: 100,000 z < 3 quasars from Data Release One

Gordon T. Richards; Robert C. Nichol; Alexander Gray; Robert J. Brunner; Robert H. Lupton; Daniel E. Vanden Berk; Shang Shan Chong; Michael A. Weinstein; Donald P. Schneider; Scott F. Anderson; Jeffrey A. Munn; Hugh C. Harris; Michael A. Strauss; Xiaohui Fan; James E. Gunn; Željko Ivezić; Donald G. York; J. Brinkmann; Andrew W. Moore

We present a catalog of 1,172,157 quasar candidates selected from the photometric imaging data of the Sloan Digital Sky Survey (SDSS). The objects are all point sources to a limiting magnitude of i = 21.3 from 8417 deg2 of imaging from SDSS Data Release 6 (DR6). This sample extends our previous catalog by using the latest SDSS public release data and probing both ultraviolet (UV)-excess and high-redshift quasars. While the addition of high-redshift candidates reduces the overall efficiency (quasars:quasar candidates) of the catalog to ~80%, it is expected to contain no fewer than 850,000 bona fide quasars, which is ~8 times the number of our previous sample and ~10 times the size of the largest spectroscopic quasar catalog. Cross-matching between our photometric catalog and spectroscopic quasar catalogs from both the SDSS and 2dF survey yields 88,879 spectroscopically confirmed quasars. For judicious selection of the most robust UV-excess sources (~500, 000 objects in all), the efficiency is nearly 97%—more than sufficient for detailed statistical analyses. The catalogs completeness to type 1 (broad-line) quasars is expected to be no worse than 70%, with most missing objects occurring at z < 0.7 and 2.5 < z < 3.0. In addition to classification information, we provide photometric redshift estimates (typically good to Δz ± 0.3 [2σ]) and cross-matching with radio, X-ray, and proper-motion catalogs. Finally, we consider the catalogs utility for determining the optical luminosity function of quasars and are able to confirm the flattening of the bright-end slope of the quasar luminosity function at z ~ 4 as compared to z ~ 2.


The Astrophysical Journal | 2004

A Catalog of Spectroscopically Identified White Dwarf Stars in the First Data Release of the Sloan Digital Sky Survey

S. J. Kleinman; Hugh C. Harris; Daniel J. Eisenstein; James Liebert; Atsuko Nitta; Jurek Krzesinski; Jeffrey A. Munn; Conard C. Dahn; Suzanne L. Hawley; Jeffrey R. Pier; Gary D. Schmidt; Nicole M. Silvestri; Paula Szkody; Michael A. Strauss; Gillian R. Knapp; Matthew J. Collinge; Anjum S. Mukadam; D. Koester; Alan Uomoto; David J. Schlegel; Scott F. Anderson; J. Brinkmann; D. Q. Lamb; Donald P. Schneider; Donald G. York

We present the full spectroscopic white dwarf and hot subdwarf sample from the Sloan Digital Sky Survey (SDSS) first data release, DR1. We find 2551 white dwarf stars of various types, 240 hot subdwarf stars, and an additional 144 objects we have identified as uncertain white dwarf stars. Of the white dwarf stars, 1888 are nonmagnetic DA types and 171 are nonmagnetic DBs. The remaining (492) objects consist of all different types of white dwarf stars: DO, DQ, DC, DH, DZ, hybrid stars such as DAB, etc., and those with nondegenerate companions. We fit the DA and DB spectra with a grid of models to determine the Teff and log g for each object. For all objects, we provide coordinates, proper motions, SDSS photometric magnitudes, and enough information to retrieve the spectrum/image from the SDSS public database. This catalog nearly doubles the known sample of spectroscopically identified white dwarf stars. In the DR1 imaged area of the sky, we increase the known sample of white dwarf stars by a factor of 8.5. We also comment on several particularly interesting objects in this sample.


The Astronomical Journal | 2004

An Improved Proper-Motion Catalog Combining USNO-B and the Sloan Digital Sky Survey

Jeffrey A. Munn; David G. Monet; Stephen E. Levine; Blaise Canzian; Jeffrey R. Pier; Hugh C. Harris; Robert H. Lupton; Željko Ivezić; Robert B. Hindsley; Gregory S. Hennessy; Donald P. Schneider; J. Brinkmann

An improved proper-motion catalog is presented, combining the USNO-B and Sloan Digital Sky Survey (SDSS) catalogs in the area of sky covered by SDSS Data Release 1 (DR1; 2099 deg2). USNO-B positions are recalibrated using SDSS galaxies, and proper motions are recomputed including both the USNO-B and SDSS positions. Statistical errors in the USNO-B proper motions are decreased by roughly 20%?30%, systematic errors are greatly reduced, and the proper motions are placed on an absolute reference frame. Requiring a match to an SDSS object removes the large number of false high proper motion objects in USNO-B. The resultant catalog is 90% complete to g < 19.7, with statistical errors in the component proper motions of roughly 3?3.5 mas yr-1, substantially smaller systematic errors, and a contamination rate of less than 0.5%. A number of studies are currently underway using proper motions from this catalog. The catalog is available via ftp.


The Astronomical Journal | 2007

Sloan Digital Sky Survey Standard Star Catalog for Stripe 82: The Dawn of Industrial 1% Optical Photometry

Željko Ivezić; Gajus A. Miknaitis; Huan Lin; Douglas L. Tucker; Robert H. Lupton; James E. Gunn; Gillian R. Knapp; Michael A. Strauss; Branimir Sesar; Mamoru Doi; M. Tanaka; Masataka Fukugita; Jon A. Holtzman; Steve Kent; Brian Yanny; David J. Schlegel; Douglas P. Finkbeiner; Nikhil Padmanabhan; Constance M. Rockosi; Mario Juric; Nicholas A. Bond; Brian Charles Lee; Chris Stoughton; Sebastian Jester; Hugh C. Harris; Paul Harding; Heather L. Morrison; J. Brinkmann; Donald P. Schneider; Donald G. York

We describe a standard star catalog constructed using multiple SDSS photometric observations (at least four per band, with a median of 10) in the ugriz system. The catalog includes 1.01 million nonvariable unresolved objects from the equatorial stripe 82 (|δJ2000.0| < 1.266°) in the right ascension range 20h34m-4h00m and with the corresponding r-band (approximately Johnson V-band) magnitudes in the range 14-22. The distributions of measurements for individual sources demonstrate that the photometric pipeline correctly estimates random photometric errors, which are below 0.01 mag for stars brighter than 19.5, 20.5, 20.5, 20, and 18.5 in ugriz, respectively (about twice as good as for individual SDSS runs). Several independent tests of the internal consistency suggest that the spatial variation of photometric zero points is not larger than ~0.01 mag (rms). In addition to being the largest available data set with optical photometry internally consistent at the ~1% level, this catalog provides a practical definition of the SDSS photometric system. Using this catalog, we show that photometric zero points for SDSS observing runs can be calibrated within a nominal uncertainty of 2% even for data obtained through 1 mag thick clouds, and we demonstrate the existence of He and H white dwarf sequences using photometric data alone. Based on the properties of this catalog, we conclude that upcoming large-scale optical surveys such as the Large Synoptic Survey Telescope will be capable of delivering robust 1% photometry for billions of sources.

Collaboration


Dive into the Hugh C. Harris's collaboration.

Top Co-Authors

Avatar

David G. Monet

Association of Universities for Research in Astronomy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge