Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hugh J. Clarke is active.

Publication


Featured researches published by Hugh J. Clarke.


Biology of Reproduction | 2004

Expression and Estradiol Regulation of Wnt Genes in the Mouse Blastocyst Identify a Candidate Pathway for Embryo-Maternal Signaling at Implantation

Othman A. Mohamed; Daniel Dufort; Hugh J. Clarke

Abstract Implantation of mammalian embryos depends on differentiation of the blastocyst to a competent state and of the uterine endometrium to a receptive state. Communication between the blastocyst and uterus ensures that these changes are temporally coordinated. Although considerable evidence indicates that the blastocyst induces expression of numerous genes in uterine tissue, potential signaling mechanisms have yet to be identified. Moreover, whereas a surge of maternal estradiol occurring on Day 4 of pregnancy in the mouse is critically required for many of the peri-implantation uterine changes, whether this surge also affects blastocyst gene expression has not been established. We show here that mouse morulae express genes encoding several members of the Wnt family of signaling molecules. Additional Wnt genes are newly expressed following development to blastocyst. Unexpectedly, Wnt5a and Wnt11 are expressed in embryos that undergo the morula-to-blastocyst transition in vivo, but only weakly or not at all in embryos that do so in vitro. Upregulation of Wnt11 is temporally coordinated with the surge of maternal estradiol on Day 4. Wnt11 fails to be upregulated in blastocysts obtained from mice ovariectomized early on Day 4 or from mice treated with the estradiol antagonist, ICI 182,780. Administration of estradiol-17β or its metabolite, 4-OH-estradiol, to ovariectomized mice restores Wnt11 expression. Moreover, Wnt11 expression is not upregulated when blastocysts are trapped in the oviduct following ligation of the utero-tubal junction, nor when estradiol-17β or 4-OH-estradiol are administered to blastocysts in vitro. These results establish a comprehensive profile of Wnt gene expression during late preimplantation development, demonstrate that estradiol regulates gene expression in the blastocyst via uterine factors, and identify Wnts as potential mediators of embryo-uterine communication during implantation.


Biology of Reproduction | 2014

The Gametic Synapse: RNA Transfer to the Bovine Oocyte

Angus D. Macaulay; Isabelle Gilbert; Julieta Caballero; Rodrigo Barreto; Eric Fournier; Prudencio Tossou; Marc-André Sirard; Hugh J. Clarke; Edouard W. Khandjian; François J. Richard; Poul Hyttel; Claude Robert

ABSTRACT Even after several decades of quiescent storage in the ovary, the female germ cell is capable of reinitiating transcription to build the reserves that are essential to support early embryonic development. In the current model of mammalian oogenesis, there exists bilateral communication between the gamete and the surrounding cells that is limited to paracrine signaling and direct transfer of small molecules via gap junctions existing at the end of the somatic cells projections that are in contact with the oolemma. The purpose of this work was to explore the role of cumulus cell projections as a means of conductance of large molecules, including RNA, to the mammalian oocyte. By studying nascent RNA with confocal and transmission electron microscopy in combination with transcript detection, we show that the somatic cells surrounding the fully grown bovine oocyte contribute to the maternal reserves by actively transferring large cargo, including mRNA and long noncoding RNA. This occurrence was further demonstrated by the reconstruction of cumulus-oocyte complexes with transfected cumulus cells transferring a synthetic transcript. We propose selective transfer of transcripts occurs, the delivery of which is supported by a remarkable synapselike vesicular trafficking connection between the cumulus cells and the gamete. This unexpected exogenous contribution to the maternal stores offers a new perspective on the determinants of female fertility.


Results and problems in cell differentiation | 2012

Post-transcriptional Control of Gene Expression During Mouse Oogenesis

Hugh J. Clarke

Post-transcriptional mechanisms play a central role in regulating gene expression during oogenesis and early embryogenesis. Growing oocytes accumulate an enormous quantity of messenger RNAs (mRNAs), but transcription decreases dramatically near the end of growth and is undetectable during meiotic maturation. Following fertilization, the embryo is initially transcriptionally inactive and then becomes active at a species-specific stage of early cleavage. Meanwhile, beginning during maturation and continuing after fertilization, the oocyte mRNAs are eliminated, allowing the embryonic genome to assume control of development. How the mammalian oocyte manages the storage, translation, and degradation of the huge quantity and diversity of mRNAs that it harbours has been the focus of enormous research effort and is the subject of this review. We discuss the roles of sequences within the 3-untranslated region of certain mRNAs and the proteins that bind to them, sequence-non-specific RNA-binding proteins, and recent studies implicating ribonucleoprotein processing (P-) bodies and cytoplasmic lattices. We also discuss mechanisms that may control the temporally regulated translational activation of different mRNAs during meiotic maturation, as well as the signals that trigger silencing and degradation of the oocyte mRNAs. We close by highlighting areas for future research including the potential key role of small RNAs in regulating gene expression in oocytes.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Follicle-stimulating hormone regulates expression and activity of epidermal growth factor receptor in the murine ovarian follicle

Stephany El-Hayek; Isabelle Demeestere; Hugh J. Clarke

Significance Ovulation in mammals requires activation of EGF receptor (EGFR) signaling within the ovarian follicle, but the mechanisms responsible for implementing the EGFR network during follicular growth remain incompletely understood. The final phase of growth is driven by FSH. Here we show that during this phase EGFR expression increases sharply in follicular granulosa cells and that this increase requires FSH; we provide evidence that the FSH-dependent increase is essential for EGFR signaling. FSH also is known to induce expression of luteinizing hormone (LH) receptors in the granulosa, permitting them to release EGFR ligands in response to preovulatory LH. By coordinating receptor expression and ligand release, FSH endows fully grown follicles with the capacity to activate EGFR signaling at ovulation. Fertility depends on the precise coordination of multiple events within the ovarian follicle to ensure ovulation of a fertilizable egg. FSH promotes late follicular development, including expression of luteinizing hormone (LH) receptor by the granulosa cells. Expression of its receptor permits the subsequent LH surge to trigger the release of ligands that activate EGF receptors (EGFR) on the granulosa, thereby initiating the ovulatory events. Here we identify a previously unknown role for FSH in this signaling cascade. We show that follicles of Fshb−/− mice, which cannot produce FSH, have a severely impaired ability to support two essential EGFR-regulated events: expansion of the cumulus granulosa cell layer that encloses the oocyte and meiotic maturation of the oocyte. These defects are not caused by an inability of Fshb−/− oocytes to produce essential oocyte-secreted factors or of Fshb−/− cumulus cells to respond. In contrast, although expression of both Egfr and EGFR increases during late folliculogenesis in Fshb+/− females, these increases fail to occur in Fshb−/− females. Remarkably, supplying a single dose of exogenous FSH activity to Fshb−/− females is sufficient to increase Egfr and EGFR expression and to restore EGFR-dependent cumulus expansion and oocyte maturation. These studies show that FSH induces an increase in EGFR expression during late folliculogenesis and provide evidence that the FSH-dependent increase is necessary for EGFR physiological function. Our results demonstrate an unanticipated role for FSH in establishing the signaling axis that coordinates ovulatory events and may contribute to the diagnosis and treatment of some types of human infertility.


Biology of Reproduction | 2011

Mice Lacking the USP2 Deubiquitinating Enzyme Have Severe Male Subfertility Associated with Defects in Fertilization and Sperm Motility

Nathalie Bedard; Yaoming Yang; Mary Gregory; Daniel G. Cyr; João Suzuki; Xiaomin Yu; Ri-Cheng Chian; Louis Hermo; Cristian O'Flaherty; Charles E. Smith; Hugh J. Clarke; Simon S. Wing

The ubiquitin-proteasome system plays an important role in spermatogenesis. However, the functions of deubiquitinating enzymes in this process remain poorly characterized. We previously showed that the deubiquitinating enzyme USP2 is induced in late elongating spermatids. To identify its function, we generated mice lacking USP2. Usp2 −/− mice appeared normal, and the weights of major organs, including the testis, did not differ from wild type (Usp2 +/+). However, although the numbers of testicular spermatids and epididymal spermatozoa were normal in Usp2 −/− males, these animals had a severe defect in fertility, yielding only 12% as many offspring as Usp2 +/+ littermates. Spermatogenesis in Usp2 −/− mice was morphologically normal except for the presence of abnormal aggregations of elongating spermatids and formation of multinucleated cells in some tubules. The epididymal epithelium was morphologically normal in Usp2 −/− mice, but some abnormal cells other than sperm were present in the lumen. Usp2 −/− epididymal spermatozoa manifested normal motility when incubated in culture media, but rapidly became immotile when incubated in PBS in contrast to Usp2 +/+ spermatozoa, which largely maintained motility under this condition. Usp2 −/− and +/+ spermatozoa underwent acrosome reactions in vitro with similar frequency. In vitro fertilization assays demonstrated a severe defect in the ability of Usp2 −/− spermatozoa to fertilize eggs. This could be bypassed by intracytoplasmic sperm injection or removal of the zona pellucida, which resulted in fertilization rates similar to that of Usp2 +/+ mice. We demonstrate for the first time, using mouse transgenic approaches, a role for the ubiquitin system in fertilization. The USP2 deubiquitinating enzyme gene is essential for normal fertilization and sperm motility.


Reproduction | 2012

Regulation of mitochondrial DNA accumulation during oocyte growth and meiotic maturation in the mouse

Enas Mahrous; Qin Yang; Hugh J. Clarke

Oocytes accumulate an enormous quantity of mitochondrial (mt) DNA, and an insufficient amount of mtDNA may underlie some cases of poor oocyte quality leading to infertility. Little is known, however, about the mechanisms that govern the timing and regulation of mtDNA accumulation during oogenesis. We report, through analysis of the mtDNA content of individual oocytes of the mouse, that mtDNA accumulates steadily during oocyte growth to reach a value of ~175u200a000 copies per cell. MtDNA content ceases to increase once oocytes reach full size and remains unchanged during meiotic maturation. To test whether mtDNA accumulation depends on oocyte growth, we inhibited growth in vitro in two ways - by exposing complexes comprising partially grown oocytes enclosed by granulosa cells to a chemical inhibitor of the phosphatidylinositol-3-kinase signaling pathway and by removing the surrounding granulosa cells from partially grown oocytes. Under both conditions, the oocytes fail to grow, but mtDNA accumulation is unaffected, indicating that the two processes can be mechanistically uncoupled. Quantitative analysis of the mRNAs encoding proteins required for mtDNA replication revealed that Polg (Polga) (polymerase-γ, α-subunit), Polg2 (Polgb), and Tfam (transcription factor A, mitochondrial) increase during oocyte growth but then decrease after fully grown oocytes become transcriptionally silent as indicated by the non-surrounded nucleolus-to-surrounded nucleolus transition. Thus, there is a correlation between the decline in the quantity of mRNAs encoding mtDNA replication factors in fully grown oocytes and the arrest of mtDNA accumulation in these cells, suggesting that the two events may be causally linked.


Biology of Reproduction | 2012

Follicle-Stimulating Hormone Accelerates Mouse Oocyte Development In Vivo

Isabelle Demeestere; Agathe K Streiff; João Suzuki; Shaima Al-Khabouri; Enas Mahrous; Seang Lin Tan; Hugh J. Clarke

ABSTRACT During folliculogenesis, oocytes grow and acquire developmental competence in a mutually dependent relationship with their adjacent somatic cells. Follicle-stimulating hormone (FSH) plays an essential and well-established role in the differentiation of somatic follicular cells, but its function in the development of the oocyte has still not been elucidated. We report here that oocytes of Fshb–/– mice, which cannot produce FSH, grow at the same rate and reach the same size as those of wild-type mice. Consistent with this observation, the granulosa cells of Fshb–/– mice express the normal quantity of mRNA encoding Kit ligand, which has been implicated in oocyte growth. Oocytes of Fshb–/– mice also accumulate normal quantities of cyclin B1 and CDK1 proteins and mitochondrial DNA. Moreover, they acquire the ability to complete meiotic maturation in vitro and undergo transition from non-surrounded nucleolus to surrounded nucleolus. However, these events of late oocyte development are significantly delayed. Following in vitro maturation and fertilization, only a small number of embryos derived from oocytes of Fshb–/– mice reach the blastocyst stage. Administration of equine chorionic gonadotropin, which provides FSH activity, 48 h before in vitro maturation increases the number of blastocysts obtained subsequently. These results indicate that FSH is not absolutely required for oocyte development in vivo but that this process occurs more rapidly in its presence. We suggest that FSH may coordinate the development of the germline and somatic compartments of the follicle, ensuring that ovulation releases a developmentally competent egg.


Biology of Reproduction | 2015

Follicle-Stimulating Hormone Increases Gap Junctional Communication Between Somatic and Germ-Line Follicular Compartments During Murine Oogenesis

Stephany El-Hayek; Hugh J. Clarke

ABSTRACT Germ cells develop in intimate contact and communication with somatic cells of the gonad. In female mammals, oocyte development depends crucially on gap junctions that couple it to the surrounding somatic granulosa cells of the follicle, yet the mechanisms that regulate this essential intercellular communication remain incompletely understood. Follicle-stimulating hormone (FSH) drives the terminal stage of follicular development. We found that FSH increases the steady-state levels of mRNAs encoding the principal connexins that constitute gap junctions and cadherins that mediate cell attachment. This increase occurs both in granulosa cells, which express the FSH-receptor, and in oocytes, which do not. FSH also increased the number of transzonal projections that provide the sites of granulosa cell-oocyte contact. Consistent with increased connexin expression, FSH increased gap junctional communication between granulosa cells and between the oocyte and granulosa cells, and it accelerated oocyte development. These results demonstrate that FSH regulates communication between the female germ cell and its somatic microenvironment. We propose that FSH-regulated gap junctional communication ensures that differentiation processes occurring in distinct cellular compartments within the follicle are precisely coordinated to ensure production of a fertilizable egg.


Biology of Reproduction | 2010

Proteasomal Activity Is Required to Initiate and to Sustain Translational Activation of Messenger RNA Encoding the Stem-Loop-Binding Protein During Meiotic Maturation in Mice

Qin Yang; Patrick Allard; Michael Huang; Wenling Zhang; Hugh J. Clarke

Abstract Developmentally regulated translation plays a key role in controlling gene expression during oogenesis. In particular, numerous mRNA species are translationally repressed in growing oocytes and become translationally activated during meiotic maturation. While many studies have focused on a U-rich sequence, termed the cytoplasmic polyadenylation element (CPE), located in the 3′-untranslated region (UTR) and the CPE-binding protein (CPEB) 1, multiple mechanisms likely contribute to translational control in oocytes. The stem-loop-binding protein (SLBP) is expressed in growing oocytes, where it is required for the accumulation of nonpolyadenylated histone mRNAs, and then accumulates substantially during meiotic maturation. We report that, in immature oocytes, Slbp mRNA carries a short poly(A) tail, and is weakly translated, and that a CPE-like sequence in the 3′-UTR is required to maintain this low activity. During maturation, Slbp mRNA becomes polyadenylated and translationally activated. Unexpectedly, proteasomal activity is required both to initiate and to sustain translational activation. This proteasomal activity is not required for the polyadenylation of Slbp mRNA during early maturation; however, it is required for a subsequent deadenylation of the mRNA that occurs during late maturation. Moreover, although CPEB1 is degraded during maturation, inhibiting its degradation by blocking mitogen-activated protein kinase 1/3 activity does not prevent the accumulation of SLBP, indicating that CPEB1 is not the protein whose degradation is required for translational activation of Slbp mRNA. These results identify a new role for proteasomal activity in initiating and sustaining translational activation during meiotic maturation.


Biology of Reproduction | 2016

Multiple Mechanisms Cooperate to Constitutively Exclude the Transcriptional Co-Activator YAP from the Nucleus During Murine Oogenesis

Laleh Abbassi; Safia Malki; Katie Cockburn; Angus D. Macaulay; Claude Robert; Janet Rossant; Hugh J. Clarke

ABSTRACT Reproduction depends on the generation of healthy oocytes. Improving therapeutic strategies to prolong or rescue fertility depends on identifying the inter- and intracellular mechanisms that direct oocyte development under physiological conditions. Growth and proliferation of multiple cell types is regulated by the Hippo signaling pathway, whose chief effectors are the transcriptional co-activator YAP and its paralogue WWTR1. To resolve conflicting results concerning the potential role of Hippo in mammalian oocyte development, we systematically investigated the expression and localization of YAP in mouse oocytes. We report that that YAP is expressed in the germ cells beginning as early as Embryonic Day 15.5 and subsequently throughout pre- and postnatal oocyte development. However, YAP is restricted to the cytoplasm at all stages. YAP is phosphorylated at serine-112 in growing and fully grown oocytes, identifying a likely mechanistic basis for its nuclear exclusion, and becomes dephosphorylated at this site during meiotic maturation. Phosphorylation at serine-112 is regulated by a mechanism dependent on cyclic AMP and protein kinase A, which is known to be active in oocytes prior to maturation. Growing oocytes also contain a subpopulation of YAP, likely dephosphorylated, that is able enter the oocyte nucleus, but it is not retained there, implying that oocytes lack the cofactors required to retain YAP in the nucleus. Thus, although YAP is expressed throughout oocyte development, phosphorylation-dependent and -independent mechanisms cooperate to ensure that it does not accumulate in the nucleus. We conclude that nuclear YAP does not play a significant physiological role during oocyte development in mammals.

Collaboration


Dive into the Hugh J. Clarke's collaboration.

Top Co-Authors

Avatar

Isabelle Demeestere

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

João Suzuki

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge