Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabelle Gilbert is active.

Publication


Featured researches published by Isabelle Gilbert.


Reproduction | 2011

Transcriptional effect of the LH surge in bovine granulosa cells during the peri-ovulation period

Isabelle Gilbert; Claude Robert; S.J. Dieleman; Patrick Blondin; Marc-André Sirard

The LH surge induces a multitude of events that are essential for ovulation and corpus luteum formation. The transcriptional responses to the LH surge of preovulatory granulosa cells (GCs) are complex and still poorly understood. In this study, a genome-wide bovine oligo array was used to determine how the gene expression profile of GCs is modulated by the LH surge. GCs from three different stages were used to assess the short- and long-term effects of this hormone on follicle differentiation: 1) 2 h before induction of the LH surge, 2) 6 h and 3) 22 h after the LH surge. The results obtained were a list of differentially expressed transcripts for each GC group. To provide a comprehensive understanding of the processes at play, biological annotations were used to reveal the different functions of transcripts, confirming that the LH surge acts in a temporal manner. The pre-LH group is involved in typical tasks such as cell division, development, and proliferation, while the early response to the LH surge included features such as response to stimulus, vascularization, and lipid synthesis, which are indicative of cells preparing for ovulation. The late response of GCs revealed terms associated with protein localization and intracellular transport, corresponding to the future secretion task that will be required for the transformation of GCs into corpus luteum. Overall, results described in this study provide new insights into the different transcriptional steps that GCs go through during ovulation and before luteinization.


Biology of Reproduction | 2016

Cumulus Cell Transcripts Transit to the Bovine Oocyte in Preparation for Maturation

Angus D. Macaulay; Isabelle Gilbert; Sara Scantland; Eric Fournier; Fazl Ashkar; Alexandre Bastien; Habib A. Shojaei Saadi; Dominique Gagné; Marc-André Sirard; Edouard W. Khandjian; François J. Richard; Poul Hyttel; Claude Robert

ABSTRACT So far, the characteristics of a good quality egg have been elusive, similar to the nature of the physiological, cellular, and molecular cues leading to its production both in vivo and in vitro. Current understanding highlights a strong and complex interdependence between the follicular cells and the gamete. Secreted factors induce cellular responses in the follicular cells, and direct exchange of small molecules from the cumulus cells to the oocyte through gap junctions controls meiotic arrest. Studying the interconnection between the cumulus cells and the oocyte, we previously demonstrated that the somatic cells also contribute transcripts to the gamete. Here, we show that these transcripts can be visualized moving down the transzonal projections (TZPs) to the oocyte, and that a time course analysis revealed progressive RNA accumulation in the TZPs, indicating that RNA transfer occurs before the initiation of meiosis resumption under a timetable fitting with the acquisition of developmental competence. A comparison of the identity of the nascent transcripts trafficking in the TZPs, with those in the oocyte increasing in abundance during maturation, and that are present on the oocytes polyribosomes, revealed transcripts common to all three fractions, suggesting the use of transferred transcripts for translation. Furthermore, the removal of potential RNA trafficking by stripping the cumulus cells caused a significant reduction in maturation rates, indicating the need for the cumulus cell RNA transfer to the oocyte. These results offer a new perspective to the determinants of oocyte quality and female fertility, as well as provide insight that may eventually be used to improve in vitro maturation conditions.


Molecular Reproduction and Development | 2009

The dynamics of gene products fluctuation during bovine pre-hatching development.

Isabelle Gilbert; Sara Scantland; Eve-Lyne Sylvestre; Catherine Gravel; Isabelle Laflamme; Marc-André Sirard; Claude Robert

Early embryonic development, spanning fertilization to blastocyst hatching, is a very dynamic developmental window that is characterized, especially in large mammals, by a period of transcriptional incompetence that ends during the maternal to embryonic transition (MET). Prior to the MET, the first cell cycles are supported by stored RNA and proteins pools accumulated during oogenesis. Therefore, RNA and protein content are different between developmental stages. It is also known that the stability of the stored mRNA and the mechanisms for translation recruitment are partly controlled by the length of the poly(A) tail. To date, little is known about RNA and protein content fluctuations during the pre‐hatching period. In this report we present measurements of total RNA, mRNA, poly(A) bearing mRNA and protein contents, as well as estimations of the proportions of both mRNA fractions to total RNA contents within these developmental stages. We found that while the ontogenic profiles of the different transcript contents were expected, their amounts were considerably lower than the reported values. Additionally, low 28S rRNA abundance and a tendency for diminishing protein content prior to the MET, suggest a limited potential for ribosomal turnover and translation. We consider the overall fluctuations in RNA and protein contents to be reference points that are essential for downstream interpretation of gene expression data across stages whether it be through candidates or high throughput approaches. Mol. Reprod. Dev. 76: 762–772, 2009.


Reproduction | 2012

Impact of the LH surge on granulosa cell transcript levels as markers of oocyte developmental competence in cattle

Isabelle Gilbert; Claude Robert; Christian Vigneault; Patrick Blondin; Marc-André Sirard

In the case of in vitro embryonic production, it is known that not all oocytes detain the developmental capacity to form an embryo. This capacity appears to be acquired through completion of folliculogenesis, during which the oocyte and follicular cells influence their respective destinies. The differentiation status of granulosa cells (GCs) could therefore offer an indicator of oocyte quality. The aim of this study was to compare mRNA transcript abundance in GCs associated with oocytes that subsequently reach or not the blastocyst stage. GCs were collected from cattle following an ovarian stimulation protocol that did or did not include the administration of LH. GCs were classified according to the developmental stage achieved by the associated oocytes. Transcript abundance was measured by microarray. Follicles (n=189) obtained from cows before and after the LH surge were essentially similar and the rates of oocytes reaching the blastocyst stage were not significantly different (52 vs 41%), but blastocyst quality was significantly better in the post-LH-surge group. In GCs from the pre-LH-surge group and associated with developmentally competent oocytes, 18 overexpressed and 22 underexpressed transcripts were found, including novel uncharacterized transcripts, whereas no differentially expressed transcripts were associated with developmentally different oocytes in the post-LH-surge group. The novel transcriptomic response associated with LH appeared to mask the difference. Based on oocyte developmental competence, the period prior to the LH surge appears best suited for studying competence-associated mRNA transcripts in bovine follicle cells.


Reproduction | 2009

Revealing the bovine embryo transcript profiles during early in vivo embryonic development

Maud Vallée; Isabelle Dufort; Stéphanie Desrosiers; Aurélie Labbe; Catherine Gravel; Isabelle Gilbert; Claude Robert; Marc-André Sirard

Gene expression profiling is proving to be a powerful approach for the identification of molecular mechanisms underlying complex cellular functions such as the dynamic early embryonic development. The objective of this study was to perform a transcript abundance profiling analysis of bovine early embryonic development in vivo using a bovine developmental array. The molecular description of the first week of life at the mRNA level is particularly challenging when considering the important fluctuations in RNA content that occur between developmental stages. Accounting for the different intrinsic RNA content between developmental stages was achieved by restricting the reaction time during the global amplification steps and by using spiked controls and reference samples. Analysis based on intensity values revealed that most of the transcripts on the array were present at some point during in vivo bovine early embryonic development, while the varying number of genes detected in each developmental stage confirmed the dynamic profile of gene expression occurring during embryonic development. Pair-wise comparison of gene expression showed a marked difference between oocytes and blastocysts profiles, and principal component analysis revealed that the majority of the transcripts could be regrouped into three main clusters representing distinct RNA abundance profiles. Overall, these data provide a detailed temporal profile of the abundance of mRNAs revealing the richness of signaling processes in early mammalian development. Results presented here provide better knowledge of bovine in vivo embryonic development and contribute to the progression of our current knowledge regarding the first week of life in mammals.


Molecular Human Reproduction | 2010

Providing a stable methodological basis for comparing transcript abundance of developing embryos using microarrays.

Isabelle Gilbert; Sara Scantland; Eve-Lyne Sylvestre; Isabelle Dufort; Marc-André Sirard; Claude Robert

High throughput methods deliver large amount of data serving to describe the physiological treatment that is being studied. In the case of microarrays, there would be a clear benefit to integrate the published data sets. However, the numerous methodological discrepancies between microarray platforms make this comparison impossible. This incompatibility is magnified when considering the peculiar context of transcript management in early embryogenesis. The total RNA content is known to profoundly fluctuate during development. In addition, the mRNA population is subjected to poly(A) tail shortening and elongating events, a characteristic of stored and recruited messengers. These intrinsic factors need to be considered when interpreting any transcript abundance profiles during early development. As a consequence, many methodological details affect microarray platform performances and prevent compatibility. In an effort to maximize our microarray platform performance, we determined the various sources of variation for every one of the main steps leading to the production of microarray data. The five main steps involved in sample preparation were evaluated, as well as conditions for post-hybridization validation by qRT-PCR. These determinations were essential for the implementation of standardized procedures for our Research Network but they can also provide insight into the compatibility issues that the microarray community is now facing.


Nucleic Acids Research | 2009

Real-time monitoring of aRNA production during T7 amplification to prevent the loss of sample representation during microarray hybridization sample preparation

Isabelle Gilbert; Sara Scantland; Isabelle Dufort; Olga Gordynska; Aurélie Labbe; Marc-André Sirard; Claude Robert

Gene expression analysis performed through comparative abundance of transcripts is facing a new challenge with the increasing need to compare samples of known cell number, such as early embryos or laser microbiopsies, where the RNA contents of identical cellular inputs can by nature be variable. When working with scarce tissues, the success of microarray profiling largely depends on the efficiency of the amplification step as determined by its ability to preserve the relative abundance of transcripts in the resulting amplified sample. Maintaining this initial relative abundance across samples is paramount to the generation of physiologically relevant data when comparing samples of different RNA content. The T7 RNA polymerase (T7-IVT) amplification is widely used for microarray sample preparation. Characterization of the reactions kinetics has clearly indicated that its true linear phase is of short duration and is followed by a nonlinear phase. This second phase leads to modifications in transcript abundance that biases comparison between samples of different types. The impact assessment performed in this study has shown that the standard amplification protocol significantly lowers the quality of microarray data, rendering more than half of differentially expressed candidates undetected and distorting the true proportional differences of all candidates analyzed.


Pharmacogenomics Journal | 2016

Unravelling the transcriptomic landscape of the major phase II UDP-glucuronosyltransferase drug metabolizing pathway using targeted RNA sequencing

Alan Tourancheau; Guillaume Margaillan; Michèle Rouleau; Isabelle Gilbert; Lyne Villeneuve; Éric Lévesque; Arnaud Droit; Chantal Guillemette

A comprehensive view of the human UDP-glucuronosyltransferase (UGT) transcriptome is a prerequisite to the establishment of an individual’s UGT metabolic glucuronidation signature. Here, we uncover the transcriptome landscape of the 10 human UGT gene loci in normal and tumoral metabolic tissues by targeted RNA next-generation sequencing. Alignment on the human hg19 reference genome identifies 234 novel exon–exon junctions. We recover all previously known UGT1 and UGT2 enzyme-coding transcripts and identify over 130 structurally and functionally diverse novel UGT variants. We further expose a revised genomic structure of UGT loci and provide a comprehensive repertoire of transcripts for each UGT gene. Data also uncover a remodelling of the UGT transcriptome occurring in a tissue- and tumor-specific manner. The complex alternative splicing program regulating UGT expression and protein functions is likely critical in determining detoxification capacity of an organ and stress-related responses, with significant impact on drug responses and diseases.


Molecular Human Reproduction | 2013

Evolutionary conservation of the oocyte transcriptome among vertebrates and its implications for understanding human reproductive function

Eve-Lyne Sylvestre; Claude Robert; Sophie Pennetier; Rémi Labrecque; Isabelle Gilbert; Isabelle Dufort; Marie-Claude Léveillé; Marc-André Sirard

Cross-phylum and cross-species comparative transcriptomic analyses provide an evolutionary perspective on how specific tissues use genomic information. A significant mRNA subset present in the oocytes of most vertebrates is stabilized or stored for post-LH surge use. Since transcription is arrested in the oocyte before ovulation, this RNA is important for completing maturation and sustaining embryo development until zygotic genome activation. We compared the human oocyte transcriptome with an oocyte-enriched subset of mouse, bovine and frog (Xenopus laevis) genes in order to evaluate similarities between species. Graded temperature stringency hybridization on a multi-species oocyte cDNA array was used to measure the similarity of preferentially expressed sequences to the human oocyte library. Identity analysis of 679 human orthologs compared with each identified official gene symbol found in the subtractive (somatic-oocyte) libraries comprising our array revealed that bovine/human similarity was greater than mouse/human or frog/human similarity. However, based on protein sequence, mouse/human similarity was greater than bovine/human similarity. Among the genes over-expressed in oocytes relative to somatic tissue in Xenopus, Mus and Bos, a high level of conservation was found relative to humans, especially for genes involved in early embryonic development.


Reproduction, Fertility and Development | 2015

Exploring the function of long non-coding RNA in the development of bovine early embryos

Julieta Caballero; Isabelle Gilbert; Eric Fournier; Dominique Gagné; Sara Scantland; Angus D. Macaulay; Claude Robert

Now recognised as part of the cellular transcriptome, the function of long non-coding (lnc) RNA remains unclear. Previously, we found that some lncRNA molecules in bovine embryos are highly responsive to culture conditions. In view of a recent demonstration that lncRNA may play a role in regulating important functions, such as maintenance of pluripotency, modification of epigenetic marks and activation of transcription, we sought evidence of its involvement in embryogenesis. Among the numerous catalogued lncRNA molecules found in oocytes and early embryos of cattle, three candidates chosen for further characterisation were found unexpectedly in the cytoplasmic compartment rather than in the nucleus. Transcriptomic survey of subcellular fractions found these candidates also associated with polyribosomes and one of them spanning transzonal projections between cumulus cells and the oocyte. Knocking down this transcript in matured oocytes increased developmental rates, leading to larger blastocysts. Transcriptome and methylome analyses of these blastocysts showed concordant data for a subset of four genes, including at least one known to be important for blastocyst survival. Functional characterisation of the roles played by lncRNA in supporting early development remains elusive. Our results suggest that some lncRNAs play a role in translation control of target mRNA. This would be important for managing the maternal reserves within which is embedded the embryonic program, especially before embryonic genome activation.

Collaboration


Dive into the Isabelle Gilbert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Blondin

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Poul Hyttel

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge