Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hugo B. Harrison is active.

Publication


Featured researches published by Hugo B. Harrison.


Nature | 2017

Global warming and recurrent mass bleaching of corals

Terry P. Hughes; James T. Kerry; Mariana Álvarez-Noriega; Jorge G. Álvarez-Romero; Kristen D. Anderson; Andrew Baird; Russell C. Babcock; Maria Beger; David R. Bellwood; Ray Berkelmans; Tom C. L. Bridge; Ian R. Butler; Maria Byrne; Neal E. Cantin; Steeve Comeau; Sean R. Connolly; Graeme S. Cumming; Steven J. Dalton; Guillermo Diaz-Pulido; C. Mark Eakin; Will F. Figueira; James P. Gilmour; Hugo B. Harrison; Scott F. Heron; Andrew S. Hoey; Jean Paul A. Hobbs; Mia O. Hoogenboom; Emma V. Kennedy; Chao-Yang Kuo; Janice M. Lough

During 2015–2016, record temperatures triggered a pan-tropical episode of coral bleaching, the third global-scale event since mass bleaching was first documented in the 1980s. Here we examine how and why the severity of recurrent major bleaching events has varied at multiple scales, using aerial and underwater surveys of Australian reefs combined with satellite-derived sea surface temperatures. The distinctive geographic footprints of recurrent bleaching on the Great Barrier Reef in 1998, 2002 and 2016 were determined by the spatial pattern of sea temperatures in each year. Water quality and fishing pressure had minimal effect on the unprecedented bleaching in 2016, suggesting that local protection of reefs affords little or no resistance to extreme heat. Similarly, past exposure to bleaching in 1998 and 2002 did not lessen the severity of bleaching in 2016. Consequently, immediate global action to curb future warming is essential to secure a future for coral reefs.


Current Biology | 2012

Larval export from marine reserves and the recruitment benefit for fish and fisheries

Hugo B. Harrison; David H. Williamson; Richard D. Evans; Glenn R. Almany; Simon R. Thorrold; Garry R. Russ; Kevin A. Feldheim; Lynne van Herwerden; Serge Planes; Maya Srinivasan; Michael L. Berumen; Geoffrey P. Jones

Marine reserves, areas closed to all forms of fishing, continue to be advocated and implemented to supplement fisheries and conserve populations. However, although the reproductive potential of important fishery species can dramatically increase inside reserves, the extent to which larval offspring are exported and the relative contribution of reserves to recruitment in fished and protected populations are unknown. Using genetic parentage analyses, we resolve patterns of larval dispersal for two species of exploited coral reef fish within a network of marine reserves on the Great Barrier Reef. In a 1,000 km(2) study area, populations resident in three reserves exported 83% (coral trout, Plectropomus maculatus) and 55% (stripey snapper, Lutjanus carponotatus) of assigned offspring to fished reefs, with the remainder having recruited to natal reserves or other reserves in the region. We estimate that reserves, which account for just 28% of the local reef area, produced approximately half of all juvenile recruitment to both reserve and fished reefs within 30 km. Our results provide compelling evidence that adequately protected reserve networks can make a significant contribution to the replenishment of populations on both reserve and fished reefs at a scale that benefits local stakeholders.


Molecular Ecology | 2013

Relative accuracy of three common methods of parentage analysis in natural populations

Hugo B. Harrison; Pablo Saenz-Agudelo; Serge Planes; Geoffrey P. Jones; Michael L. Berumen

Parentage studies and family reconstructions have become increasingly popular for investigating a range of evolutionary, ecological and behavioural processes in natural populations. However, a number of different assignment methods have emerged in common use and the accuracy of each may differ in relation to the number of loci examined, allelic diversity, incomplete sampling of all candidate parents and the presence of genotyping errors. Here, we examine how these factors affect the accuracy of three popular parentage inference methods (colony, famoz and an exclusion‐Bayes’ theorem approach by Christie (Molecular Ecology Resources, 2010a, 10, 115) to resolve true parent–offspring pairs using simulated data. Our findings demonstrate that accuracy increases with the number and diversity of loci. These were clearly the most important factors in obtaining accurate assignments explaining 75–90% of variance in overall accuracy across 60 simulated scenarios. Furthermore, the proportion of candidate parents sampled had a small but significant impact on the susceptibility of each method to either false‐positive or false‐negative assignments. Within the range of values simulated, colony outperformed FaMoz, which outperformed the exclusion‐Bayes’ theorem method. However, with 20 or more highly polymorphic loci, all methods could be applied with confidence. Our results show that for parentage inference in natural populations, careful consideration of the number and quality of markers will increase the accuracy of assignments and mitigate the effects of incomplete sampling of parental populations.


Science | 2018

Spatial and temporal patterns of mass bleaching of corals in the Anthropocene

Terry P. Hughes; Kristen D. Anderson; Sean R. Connolly; Scott F. Heron; James T. Kerry; Janice M. Lough; Andrew Baird; Julia K. Baum; Michael L. Berumen; Tom C. L. Bridge; Danielle C. Claar; C. Mark Eakin; James P. Gilmour; Nicholas A. J. Graham; Hugo B. Harrison; Jean-Paul A. Hobbs; Andrew S. Hoey; Mia O. Hoogenboom; Ryan J. Lowe; Malcolm T. McCulloch; John M. Pandolfi; Morgan S. Pratchett; Verena Schoepf; Gergely Torda; Shaun K. Wilson

Not enough time for recovery Coral bleaching occurs when stressful conditions result in the expulsion of the algal partner from the coral. Before anthropogenic climate warming, such events were relatively rare, allowing for recovery of the reef between events. Hughes et al. looked at 100 reefs globally and found that the average interval between bleaching events is now less than half what it was before. Such narrow recovery windows do not allow for full recovery. Furthermore, warming events such as El Niño are warmer than previously, as are general ocean conditions. Such changes are likely to make it more and more difficult for reefs to recover between stressful events. Science, this issue p. 80 Coral reefs in the present day have less time than in earlier periods to recover from bleaching events. Tropical reef systems are transitioning to a new era in which the interval between recurrent bouts of coral bleaching is too short for a full recovery of mature assemblages. We analyzed bleaching records at 100 globally distributed reef locations from 1980 to 2016. The median return time between pairs of severe bleaching events has diminished steadily since 1980 and is now only 6 years. As global warming has progressed, tropical sea surface temperatures are warmer now during current La Niña conditions than they were during El Niño events three decades ago. Consequently, as we transition to the Anthropocene, coral bleaching is occurring more frequently in all El Niño–Southern Oscillation phases, increasing the likelihood of annual bleaching in the coming decades.


PLOS ONE | 2014

Long-Distance Dispersal via Ocean Currents Connects Omani Clownfish Populations throughout Entire Species Range

Stephen D. Simpson; Hugo B. Harrison; Michel R. Claereboudt; Serge Planes

Dispersal is a crucial ecological process, driving population dynamics and defining the structure and persistence of populations. Measuring demographic connectivity between discreet populations remains a long-standing challenge for most marine organisms because it involves tracking the movement of pelagic larvae. Recent studies demonstrate local connectivity of reef fish populations via the dispersal of planktonic larvae, while biogeography indicates some larvae must disperse 100–1000 s kilometres. To date, empirical measures of long-distance dispersal are lacking and the full scale of dispersal is unknown. Here we provide the first measure of long-distance dispersal in a coral reef fish, the Omani clownfish Amphiprion omanensis, throughout its entire species range. Using genetic assignment tests we demonstrate bidirectional exchange of first generation migrants, with subsequent social and reproductive integration, between two populations separated by over 400 km. Immigration was 5.4% and 0.7% in each region, suggesting a biased southward exchange, and matched predictions from a physically-coupled dispersal model. This rare opportunity to measure long-distance dispersal demonstrates connectivity of isolated marine populations over distances of 100 s of kilometres and provides a unique insight into the processes of biogeography, speciation and adaptation.


Molecular Ecology | 2015

Seascape genetics along environmental gradients in the Arabian Peninsula: insights from ddRAD sequencing of anemonefishes

Pablo Saenz-Agudelo; Joseph D. DiBattista; Marek J. Piatek; Michelle R. Gaither; Hugo B. Harrison; Gerrit B. Nanninga; Michael L. Berumen

Understanding the processes that shape patterns of genetic structure across space is a central aim of landscape genetics. However, it remains unclear how geographical features and environmental variables shape gene flow, particularly for marine species in large complex seascapes. Here, we evaluated the genomic composition of the two‐band anemonefish Amphiprion bicinctus across its entire geographical range in the Red Sea and Gulf of Aden, as well as its close relative, Amphiprion omanensis endemic to the southern coast of Oman. Both the Red Sea and the Arabian Sea are complex and environmentally heterogeneous marine systems that provide an ideal scenario to address these questions. Our findings confirm the presence of two genetic clusters previously reported for A. bicinctus in the Red Sea. Genetic structure analyses suggest a complex seascape configuration, with evidence of both isolation by distance (IBD) and isolation by environment (IBE). In addition to IBD and IBE, genetic structure among sites was best explained when two barriers to gene flow were also accounted for. One of these coincides with a strong oligotrophic–eutrophic gradient at around 16–20˚N in the Red Sea. The other agrees with a historical bathymetric barrier at the straight of Bab al Mandab. Finally, these data support the presence of interspecific hybrids at an intermediate suture zone at Socotra and indicate complex patterns of genomic admixture in the Gulf of Aden with evidence of introgression between species. Our findings highlight the power of recent genomic approaches to resolve subtle patterns of gene flow in marine seascapes.


Nature Ecology and Evolution | 2017

Larval fish dispersal in a coral-reef seascape

Glenn R. Almany; Serge Planes; Simon R. Thorrold; Michael L. Berumen; Michael Bode; Pablo Saenz-Agudelo; Mary C. Bonin; Ashley J. Frisch; Hugo B. Harrison; Vanessa Messmer; Gerrit B. Nanninga; Mark A. Priest; Maya Srinivasan; Tane H. Sinclair-Taylor; David H. Williamson; Geoffrey P. Jones

Larval dispersal is a critical yet enigmatic process in the persistence and productivity of marine metapopulations. Empirical data on larval dispersal remain scarce, hindering the use of spatial management tools in efforts to sustain ocean biodiversity and fisheries. Here we document dispersal among subpopulations of clownfish (Amphiprion percula) and butterflyfish (Chaetodon vagabundus) from eight sites across a large seascape (10,000 km2) in Papua New Guinea across 2 years. Dispersal of clownfish was consistent between years, with mean observed dispersal distances of 15 km and 10 km in 2009 and 2011, respectively. A Laplacian statistical distribution (the dispersal kernel) predicted a mean dispersal distance of 13–19 km, with 90% of settlement occurring within 31–43 km. Mean dispersal distances were considerably greater (43–64 km) for butterflyfish, with kernels declining only gradually from spawning locations. We demonstrate that dispersal can be measured on spatial scales sufficient to inform the design of and test the performance of marine reserve networks.


Ecology and Evolution | 2014

Validation of microsatellite multiplexes for parentage analysis and species discrimination in two hybridizing species of coral reef fish (Plectropomus spp., Serranidae)

Hugo B. Harrison; Kevin A. Feldheim; Geoffrey P. Jones; Kayan Ma; Hicham Mansour; Sadhasivam Perumal; David H. Williamson; Michael L. Berumen

Microsatellites are often considered ideal markers to investigate ecological processes in animal populations. They are regularly used as genetic barcodes to identify species, individuals, and infer familial relationships. However, such applications are highly sensitive the number and diversity of microsatellite markers, which are also prone to error. Here, we propose a novel framework to assess the suitability of microsatellite datasets for parentage analysis and species discrimination in two closely related species of coral reef fish, Plectropomus leopardus and P. maculatus (Serranidae). Coral trout are important fisheries species throughout the Indo-Pacific region and have been shown to hybridize in parts of the Great Barrier Reef, Australia. We first describe the development of 25 microsatellite loci and their integration to three multiplex PCRs that co-amplify in both species. Using simulations, we demonstrate that the complete suite of markers provides appropriate power to discriminate between species, detect hybrid individuals, and resolve parent–offspring relationships in natural populations, with over 99.6% accuracy in parent–offspring assignments. The markers were also tested on seven additional species within the Plectropomus genus with polymorphism in 28–96% of loci. The multiplex PCRs developed here provide a reliable and cost-effective strategy to investigate evolutionary and ecological dynamics and will be broadly applicable in studies of wild populations and aquaculture brood stocks for these closely related fish species.


Molecular Ecology | 2016

Large-scale, multidirectional larval connectivity among coral reef fish populations in the Great Barrier Reef Marine Park

David H. Williamson; Hugo B. Harrison; Glenn R. Almany; Michael L. Berumen; Michael Bode; Mary C. Bonin; Severine Choukroun; Peter Doherty; Ashley J. Frisch; Pablo Saenz-Agudelo; Geoffrey P. Jones

Larval dispersal is the key process by which populations of most marine fishes and invertebrates are connected and replenished. Advances in larval tagging and genetics have enhanced our capacity to track larval dispersal, assess scales of population connectivity, and quantify larval exchange among no‐take marine reserves and fished areas. Recent studies have found that reserves can be a significant source of recruits for populations up to 40 km away, but the scale and direction of larval connectivity across larger seascapes remain unknown. Here, we apply genetic parentage analysis to investigate larval dispersal patterns for two exploited coral reef groupers (Plectropomus maculatus and Plectropomus leopardus) within and among three clusters of reefs separated by 60–220 km within the Great Barrier Reef Marine Park, Australia. A total of 69 juvenile P. maculatus and 17 juvenile P. leopardus (representing 6% and 9% of the total juveniles sampled, respectively) were genetically assigned to parent individuals on reefs within the study area. We identified both short‐distance larval dispersal within regions (200 m to 50 km) and long‐distance, multidirectional dispersal of up to ~250 km among regions. Dispersal strength declined significantly with distance, with best‐fit dispersal kernels estimating median dispersal distances of ~110 km for P. maculatus and ~190 km for P. leopardus. Larval exchange among reefs demonstrates that established reserves form a highly connected network and contribute larvae for the replenishment of fished reefs at multiple spatial scales. Our findings highlight the potential for long‐distance dispersal in an important group of reef fishes, and provide further evidence that effectively protected reserves can yield recruitment and sustainability benefits for exploited fish populations.


PLOS ONE | 2016

Planning Marine Reserve Networks for Both Feature Representation and Demographic Persistence Using Connectivity Patterns.

Michael Bode; David H. Williamson; Rebecca Weeks; Geoff Jones; Glenn R. Almany; Hugo B. Harrison; Jess K. Hopf; Robert L. Pressey

Marine reserve networks must ensure the representation of important conservation features, and also guarantee the persistence of key populations. For many species, designing reserve networks is complicated by the absence or limited availability of spatial and life-history data. This is particularly true for data on larval dispersal, which has only recently become available. However, systematic conservation planning methods currently incorporate demographic processes through unsatisfactory surrogates. There are therefore two key challenges to designing marine reserve networks that achieve feature representation and demographic persistence constraints. First, constructing a method that efficiently incorporates persistence as well as complementary feature representation. Second, incorporating persistence using a mechanistic description of population viability, rather than a proxy such as size or distance. Here we construct a novel systematic conservation planning method that addresses both challenges, and parameterise it to design a hypothetical marine reserve network for fringing coral reefs in the Keppel Islands, Great Barrier Reef, Australia. For this application, we describe how demographic persistence goals can be constructed for an important reef fish species in the region, the bar-cheeked trout (Plectropomus maculatus). We compare reserve networks that are optimally designed for either feature representation or demographic persistence, with a reserve network that achieves both goals simultaneously. As well as being practically applicable, our analyses also provide general insights into marine reserve planning for both representation and demographic persistence. First, persistence constraints for dispersive organisms are likely to be much harder to achieve than representation targets, due to their greater complexity. Second, persistence and representation constraints pull the reserve network design process in divergent directions, making it difficult to efficiently achieve both constraints. Although our method can be readily applied to the data-rich Keppel Islands case study, we finally consider the factors that limit the method’s utility in information-poor contexts common in marine conservation.

Collaboration


Dive into the Hugo B. Harrison's collaboration.

Top Co-Authors

Avatar

Michael L. Berumen

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Serge Planes

PSL Research University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hicham Mansour

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Glenn R. Almany

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge