Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hugo G. Hilton is active.

Publication


Featured researches published by Hugo G. Hilton.


PLOS Genetics | 2013

Co-evolution of Human Leukocyte Antigen (HLA) Class I Ligands with Killer-Cell Immunoglobulin-Like Receptors (KIR) in a Genetically Diverse Population of Sub-Saharan Africans

Paul J. Norman; Jill A. Hollenbach; Neda Nemat-Gorgani; Lisbeth A. Guethlein; Hugo G. Hilton; Marcelo J. Pando; Kwadwo A. Koram; Eleanor M. Riley; Laurent Abi-Rached; Peter Parham

Interactions between HLA class I molecules and killer-cell immunoglobulin-like receptors (KIR) control natural killer cell (NK) functions in immunity and reproduction. Encoded by genes on different chromosomes, these polymorphic ligands and receptors correlate highly with disease resistance and susceptibility. Although studied at low-resolution in many populations, high-resolution analysis of combinatorial diversity of HLA class I and KIR is limited to Asian and Amerindian populations with low genetic diversity. At the other end of the spectrum is the West African population investigated here: we studied 235 individuals, including 104 mother-child pairs, from the Ga-Adangbe of Ghana. This population has a rich diversity of 175 KIR variants forming 208 KIR haplotypes, and 81 HLA-A, -B and -C variants forming 190 HLA class I haplotypes. Each individual we studied has a unique compound genotype of HLA class I and KIR, forming 1–14 functional ligand-receptor interactions. Maintaining this exceptionally high polymorphism is balancing selection. The centromeric region of the KIR locus, encoding HLA-C receptors, is highly diverse whereas the telomeric region encoding Bw4-specific KIR3DL1, lacks diversity in Africans. Present in the Ga-Adangbe are high frequencies of Bw4-bearing HLA-B*53:01 and Bw4-lacking HLA-B*35:01, which otherwise are identical. Balancing selection at key residues maintains numerous HLA-B allotypes having and lacking Bw4, and also those of stronger and weaker interaction with LILRB1, a KIR-related receptor. Correspondingly, there is a balance at key residues of KIR3DL1 that modulate its level of cell-surface expression. Thus, capacity to interact with NK cells synergizes with peptide binding diversity to drive HLA-B allele frequency distribution. These features of KIR and HLA are consistent with ongoing co-evolution and selection imposed by a pathogen endemic to West Africa. Because of the prevalence of malaria in the Ga-Adangbe and previous associations of cerebral malaria with HLA-B*53:01 and KIR, Plasmodium falciparum is a candidate pathogen.


Journal of Immunology | 2012

Mutation at Positively Selected Positions in the Binding Site for HLA-C Shows That KIR2DL1 Is a More Refined but Less Adaptable NK Cell Receptor Than KIR2DL3

Hugo G. Hilton; Luca Vago; Anastazia M. Older Aguilar; Achim K. Moesta; Thorsten Graef; Laurent Abi-Rached; Paul J. Norman; Lisbeth A. Guethlein; Katharina Fleischhauer; Peter Parham

Through recognition of HLA class I, killer cell Ig-like receptors (KIR) modulate NK cell functions in human immunity and reproduction. Although a minority of HLA-A and -B allotypes are KIR ligands, HLA-C allotypes dominate this regulation, because they all carry either the C1 epitope recognized by KIR2DL2/3 or the C2 epitope recognized by KIR2DL1. The C1 epitope and C1-specific KIR evolved first, followed several million years later by the C2 epitope and C2-specific KIR. Strong, varying selection pressure on NK cell functions drove the diversification and divergence of hominid KIR, with six positions in the HLA class I binding site of KIR being targets for positive diversifying selection. Introducing each naturally occurring residue at these positions into KIR2DL1 and KIR2DL3 produced 38 point mutants that were tested for binding to 95 HLA- A, -B, and -C allotypes. Modulating specificity for HLA-C is position 44, whereas positions 71 and 131 control cross-reactivity with HLA-A*11:02. Dominating avidity modulation is position 70, with lesser contributions from positions 68 and 182. KIR2DL3 has lower avidity and broader specificity than KIR2DL1. Mutation could increase the avidity and change the specificity of KIR2DL3, whereas KIR2DL1 specificity was resistant to mutation, and its avidity could only be lowered. The contrasting inflexibility of KIR2DL1 and adaptability of KIR2DL3 fit with C2-specific KIR having evolved from C1-specific KIR, and not vice versa. Substitutions restricted to activating KIR all reduced the avidity of KIR2DL1 and KIR2DL3, further evidence that activating KIR function often becomes subject to selective attenuation.


Placenta | 2012

Review: Immunogenetics of human placentation

Peter Parham; Paul J. Norman; Laurent Abi-Rached; Hugo G. Hilton; Lisbeth A. Guethlein

Natural killer (NK) cells are a population of lymphocytes that function in both immune defense and reproduction. Diversifying NK cell phenotype and function are interactions between NK cell receptors and major histocompatibility complex (MHC) class I ligands. As a consequence of strong and variable selection these ligand-receptor systems are polymorphic, rapidly evolving, and considerably species-specific. Counterparts to the human system of HLA class I ligands and killer cell immunoglobulin-like receptors (KIR) are present only in apes and Old World monkeys. HLA-C, the dominant ligand for human KIR and the only polymorphic HLA class I expressed by trophoblast, is further restricted to humans and great apes. Even then, the human system appears qualitatively different from that of chimpanzees, in that it has evolved a genetic balance between particular groups of receptors and ligands that favor reproductive success and other groups of receptors and ligands that have been correlated with disordered placentation. Human populations that have survived successive episodes of epidemic disease and population bottlenecks maintain a breadth of diversity for KIR and HLA class I, implying that loss of such diversity disfavors long-term survival of a human population.


Science immunology | 2016

Class I HLA haplotypes form two schools that educate NK cells in different ways

Amir Horowitz; Zakia Djaoud; Neda Nemat-Gorgani; Jeroen H. Blokhuis; Hugo G. Hilton; Vivien Béziat; Karl-Johan Malmberg; Paul J. Norman; Lisbeth A. Guethlein; Peter Parham

Individuals heterozygous for HLA haplotypes have increased NK cell diversity because of distinct education pathways. NK cell immunity gets schooled Population-level genetic analysis can give us clues as to which factors guide immune evolution. Now, Horowitz et al. have applied this analysis to polymorphisms in HLA that affect NK cell education. They find that the HLA-B haplotype −21M that delivers functional peptides to the conserved CD94/NKG2A receptor rarely encodes ligands for the more diverse killer cell immunoglobulin-like receptors (KIRs), in contrast to the haplotype −21T, which does not deliver functional peptides. Individuals homo- or heterozygous for −21M are more likely to have more diverse CD94/NKG2A+ NK cells, suggesting that these HLA haplotypes may have specialized to either the KIR or CD94/NKG2A school through complementary coevolution. Natural killer (NK) cells are lymphocytes that have vital functions in innate and adaptive immunity, as well as placental reproduction. Polymorphic human leukocyte antigen (HLA) class I educates NK cells through interactions with killer cell immunoglobulin-like receptors (KIRs) and by supplying peptides that bind HLA-E to form ligands for CD94/NKG2A receptors on NK cells. HLA-B dimorphism in the leader peptide modulates this latter function: −21methionine (−21M) delivers functional peptides, but −21threonine (−21T) does not. Genetic analysis of human populations worldwide showed that haplotypes with −21M HLA-B rarely encoded the KIR ligands Bw4+HLA-B and C2+HLA-C. Thus, there are two fundamental forms of HLA haplotype: one preferentially supplying CD94/NKG2A ligands and the other preferentially supplying KIR ligands. This −21 HLA-B dimorphism divides the human population into three groups: M/M, M/T, and T/T. Mass cytometry and assays of immune function demonstrated that M/M and M/T individuals have CD94/NKG2A+ NK cells that are better educated, phenotypically more diverse, and functionally more potent than those in T/T individuals. The KIR school of NK cell education evolved in the context of the much older CD94/NKG2A school, and this complementary coevolution may have facilitated the specialization of HLA haplotypes toward one school or the other.Natural killer (NK) cells are lymphocytes that have vital functions in innate and adaptive immunity, as well as placental reproduction. Polymorphic human leukocyte antigen (HLA) class I educates NK cells through interactions with killer cell immunoglobulin-like receptors (KIRs) and by supplying peptides that bind HLA-E to form ligands for CD94/NKG2A receptors on NK cells. HLA-B dimorphism in the leader peptide modulates this latter function: -21methionine (-21M) delivers functional peptides, but -21threonine (-21T) does not. Genetic analysis of human populations worldwide showed that haplotypes with -21M HLA-B rarely encoded the KIR ligands Bw4+HLA-B and C2+HLA-C. Thus, there are two fundamental forms of HLA haplotype: one preferentially supplying CD94/NKG2A ligands and the other preferentially supplying KIR ligands. This -21 HLA-B dimorphism divides the human population into three groups: M/M, M/T, and T/T. Mass cytometry and assays of immune function demonstrated that M/M and M/T individuals have CD94/NKG2A+ NK cells that are better educated, phenotypically more diverse, and functionally more potent than those in T/T individuals. The KIR school of NK cell education evolved in the context of the much older CD94/NKG2A school, and this complementary coevolution may have facilitated the specialization of HLA haplotypes toward one school or the other.


Journal of Immunology | 2015

Polymorphic HLA-C Receptors Balance the Functional Characteristics of KIR Haplotypes

Hugo G. Hilton; Lisbeth A. Guethlein; Ana Goyos; Neda Nemat-Gorgani; David A. Bushnell; Paul J. Norman; Peter Parham

The human killer cell Ig-like receptor (KIR) locus comprises two groups of KIR haplotypes, termed A and B. These are present in all human populations but with different relative frequencies, suggesting they have different functional properties that underlie their balancing selection. We studied the genomic organization and functional properties of the alleles of the inhibitory and activating HLA-C receptors encoded by KIR haplotypes. Because every HLA-C allotype functions as a ligand for KIR, the interactions between KIR and HLA-C dominate the HLA class I–mediated regulation of human NK cells. The C2 epitope is recognized by inhibitory KIR2DL1 and activating KIR2DS1, whereas the C1 epitope is recognized by inhibitory KIR2DL2 and KIR2DL3. This study shows that the KIR2DL1, KIR2DS1, and KIR2DL2/3 alleles form distinctive phylogenetic clades that associate with specific KIR haplotypes. KIR A haplotypes are characterized by KIR2DL1 alleles that encode strong inhibitory C2 receptors and KIR2DL3 alleles encoding weak inhibitory C1 receptors. In striking contrast, KIR B haplotypes are characterized by KIR2DL1 alleles that encode weak inhibitory C2 receptors and KIR2DL2 alleles encoding strong inhibitory C1 receptors. The wide-ranging properties of KIR allotypes arise from substitutions throughout the KIR molecule. Such substitutions can influence cell surface expression, as well as the avidity and specificity for HLA-C ligands. Consistent with the crucial role of inhibitory HLA-C receptors in self-recognition, as well as NK cell education and response, most KIR haplotypes have both a functional C1 and C2 receptor, despite the considerable variation that occurs in ligand recognition and surface expression.


Immunological Reviews | 2015

Co-evolution of MHC class I and variable NK cell receptors in placental mammals.

Lisbeth A. Guethlein; Paul J. Norman; Hugo G. Hilton; Peter Parham

Shaping natural killer (NK) cell functions in human immunity and reproduction are diverse killer cell immunoglobulin‐like receptors (KIRs) that recognize polymorphic MHC class I determinants. A survey of placental mammals suggests that KIRs serve as variable NK cell receptors only in certain primates and artiodactyls. Divergence of the functional and variable KIRs in primates and artiodactyls predates placental reproduction. Among artiodactyls, cattle but not pigs have diverse KIRs. Catarrhine (humans, apes, and Old World monkeys) and platyrrhine (New World monkeys) primates, but not prosimians, have diverse KIRs. Platyrrhine and catarrhine systems of KIR and MHC class I are highly diverged, but within the catarrhines, a stepwise co‐evolution of MHC class I and KIR is discerned. In Old World monkeys, diversification focuses on MHC‐A and MHC‐B and their cognate lineage II KIR. With evolution of C1‐bearing MHC‐C from MHC‐B, as informed by orangutan, the focus changes to MHC‐C and its cognate lineage III KIR. Evolution of C2 from C1 and fixation of MHC‐C drove further elaboration of MHC‐C‐specific KIR, as exemplified by chimpanzee. In humans, the evolutionary trajectory changes again. Emerging from reorganization of the KIR locus and selective attenuation of KIR avidity for MHC class I are the functionally distinctive KIR A and KIR B haplotypes.


Immunology | 2017

Deciphering the killer‐cell immunoglobulin‐like receptor system at super‐resolution for natural killer and T‐cell biology

Vivien Béziat; Hugo G. Hilton; Paul J. Norman; James A. Traherne

Killer‐cell immunoglobulin‐like receptors (KIRs) are components of two fundamental biological systems essential for human health and survival. First, they contribute to host immune responses, both innate and adaptive, through their expression by natural killer cells and T cells. Second, KIR play a key role in regulating placentation, and hence reproductive success. Analogous to the diversity of their human leucocyte antigen class I ligands, KIR are extremely polymorphic. In this review, we describe recent developments, fuelled by methodological advances, that are helping to decipher the KIR system in terms of haplotypes, polymorphisms, expression patterns and their ligand interactions. These developments are delivering deeper insight into the relevance of KIR in immune system function, evolution and disease.


PLOS Genetics | 2015

Loss and Gain of Natural Killer Cell Receptor Function in an African Hunter-Gatherer Population.

Hugo G. Hilton; Paul J. Norman; Neda Nemat-Gorgani; Ana Goyos; Jill A. Hollenbach; Brenna M. Henn; Christopher R. Gignoux; Lisbeth A. Guethlein; Peter Parham

Modulating natural killer cell functions in human immunity and reproduction are diverse interactions between the killer cell immunoglobulin-like receptors (KIR) of Natural Killer (NK) cells and HLA class I ligands on the surface of tissue cells. Dominant interactions are between KIR2DL1 and the C2 epitope of HLA-C and between KIR2DL2/3 and the C1 epitope of HLA-C. KhoeSan hunter-gatherers of Southern Africa represent the earliest population divergence known and are the most genetically diverse indigenous people, qualities reflected in their KIR and HLA genes. Of the ten KhoeSan KIR2DL1 alleles, KIR2DL1*022 and KIR2DL1*026 likely originated in the KhoeSan, and later were transmitted at low frequency to the neighboring Zulus through gene flow. These alleles arose by point mutation from other KhoeSan KIR2DL1 alleles that are more widespread globally. Mutation of KIR2DL1*001 gave rise to KIR2DL1*022, causing loss of C2 recognition and gain of C1 recognition. This makes KIR2DL1*022 a more avid and specific C1 receptor than any KIR2DL2/3 allotype. Mutation of KIR2DL1*012 gave rise to KIR2DL1*026, causing premature termination of translation at the end of the transmembrane domain. This makes KIR2DL1*026 a membrane-associated receptor that lacks both a cytoplasmic tail and signaling function. At higher frequencies than their parental allotypes, the combined effect of the KhoeSan-specific KIR2DL1*022 and KIR2DL1*026 is to reduce the frequency of strong inhibitory C2 receptors and increase the frequency of strong inhibitory C1 receptors. Because interaction of KIR2DL1 with C2 is associated with risk of pregnancy disorder, these functional changes are potentially advantageous. Whereas all other KhoeSan KIR2DL1 alleles are present on a wide diversity of centromeric KIR haplotypes, KIR2DL1*026 is present on a single KIR haplotype and KIR2DL1*022 is present on two very similar haplotypes. The high linkage disequilibrium across their haplotypes is consistent with a recent emergence for these KIR2DL1 alleles that have distinctive functions.


Immunogenetics | 2017

Missing or altered self: human NK cell receptors that recognize HLA-C

Hugo G. Hilton; Peter Parham

Natural killer (NK) cells are fast-acting and versatile lymphocytes that are critical effectors of innate immunity, adaptive immunity, and placental development. Controlling NK cell function are the interactions between killer-cell immunoglobulin-like receptors (KIRs) and their HLA-A, HLA-B and HLA-C ligands. Due to the extensive polymorphism of both KIR and HLA class I, these interactions are highly diversified and specific combinations correlate with protection or susceptibility to a range of infectious, autoimmune, and reproductive disorders. Evolutionary, genetic, and functional studies are consistent with the interactions between KIR and HLA-C being the dominant control mechanism of human NK cells. In addition to their recognition of the C1 and C2 epitopes, increasing evidence points to KIR having a previously unrecognized selectivity for the peptide presented by HLA-C. This selectivity appears to be a conserved feature of activating KIR and may partly explain the slow progress made in identifying their HLA class I ligands. The peptide selectivity of KIR allows NK cells to respond, not only to changes in the surface expression of HLA-C, but also to the more subtle changes in the HLA-C peptidome, such as occur during viral infection and malignant transformation. Here, we review recent advances in understanding of human-specific KIR evolution and how the inhibitory and activating HLA-C receptors allow NK cells to respond to healthy cells, diseased cells, and the semi-allogeneic cells of the fetus.


Journal of Immunological Methods | 2015

The production of KIR-Fc fusion proteins and their use in a multiplex HLA class I binding assay.

Hugo G. Hilton; Achim K. Moesta; Lisbeth A. Guethlein; Jeroen H. Blokhuis; Peter Parham; Paul J. Norman

Soluble recombinant proteins that comprise the extracellular part of a surface expressed receptor attached to the Fc region of an IgG antibody have facilitated the determination of ligand specificity for an array of immune system receptors. Among such receptors is the family of killer cell immunoglobulin-like receptors (KIR) that recognize HLA class I ligands. These receptors, expressed on natural killer (NK) cells and T cells, play important roles in both immune defense and placental development in early pregnancy. Here we describe a method for the production of two domain KIR-Fc fusion proteins using baculovirus infected insect cells. This method is more scalable than traditional mammalian cell expression systems and produces efficiently folded proteins that carry posttranslational modifications found in native KIR. We also describe a multiplex binding assay using the Luminex platform that determines the avidity and specificity of two domain KIR-Fc for a panel of microbeads, each coated with one of 97 HLA class I allotypes. This assay is simple to perform, and represents a major improvement over the assays used previously, which were limited in the number of KIR and HLA class I combinations that could be assayed at any one time. The results obtained from this assay can be used to predict the response of NK cell and T cells when their KIR recognize HLA class I.

Collaboration


Dive into the Hugo G. Hilton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Goyos

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeroen H. Blokhuis

Biomedical Primate Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge