Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hugo Hofhuis is active.

Publication


Featured researches published by Hugo Hofhuis.


Nature | 2007

PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development.

Carla Galinha; Hugo Hofhuis; Marijn Luijten; Viola Willemsen; Ikram Blilou; Renze Heidstra; Ben Scheres

Factors with a graded distribution can program fields of cells in a dose-dependent manner, but no evidence has hitherto surfaced for such mechanisms in plants. In the Arabidopsis thaliana root, two PLETHORA (PLT) genes encoding AP2-domain transcription factors have been shown to maintain the activity of stem cells. Here we show that a clade of four PLT homologues is necessary for root formation. Promoter activity and protein fusions of PLT homologues display gradient distributions with maxima in the stem cell area. PLT activities are largely additive and dosage dependent. High levels of PLT activity promote stem cell identity and maintenance; lower levels promote mitotic activity of stem cell daughters; and further reduction in levels is required for cell differentiation. Our findings indicate that PLT protein dosage is translated into distinct cellular responses.


PLOS Biology | 2008

Root System Architecture from Coupling Cell Shape to Auxin Transport

Marta Laskowski; Verônica A. Grieneisen; Hugo Hofhuis; Colette A. ten Hove; Athanasius F. M. Marée; Ben Scheres

Lateral organ position along roots and shoots largely determines plant architecture, and depends on auxin distribution patterns. Determination of the underlying patterning mechanisms has hitherto been complicated because they operate during growth and division. Here, we show by experiments and computational modeling that curvature of the Arabidopsis root influences cell sizes, which, together with tissue properties that determine auxin transport, induces higher auxin levels in the pericycle cells on the outside of the curve. The abundance and position of the auxin transporters restricts this response to the zone competent for lateral root formation. The auxin import facilitator, AUX1, is up-regulated by auxin, resulting in additional local auxin import, thus creating a new auxin maximum that triggers organ formation. Longitudinal spacing of lateral roots is modulated by PIN proteins that promote auxin efflux, and pin2,3,7 triple mutants show impaired lateral inhibition. Thus, lateral root patterning combines a trigger, such as cell size difference due to bending, with a self-organizing system that mediates alterations in auxin transport.


Current Biology | 2003

Root-specific CLE19 overexpression and the sol1/2 suppressors implicate a CLV-like pathway in the control of Arabidopsis root meristem maintenance

Eva Casamitjana-Martinez; Hugo Hofhuis; Jian Xu; Chun-Ming Liu; Renze Heidstra; Ben Scheres

In the Arabidopsis shoot apical meristem, an organizing center signals in a non-cell-autonomous manner to specify the overlying stem cells. Stem cells express the small, secreted protein CLAVATA3 (CLV3; ) that activates the CLV1-CLV2 receptor complex, which negatively controls the size of the organizing center. Consistently, CLV3 overexpression restricts shoot meristem size. The root meristem also contains a stem cell organizer, and here we show that localized overexpression in roots of CLE19, encoding a CLV3 homolog, restricts the size of the root meristem. This suggests that CLE19 acts by overactivating an endogenous CLV-like pathway involved in root meristem maintenance. Surprisingly, CLE19 restricts meristem size without directly interfering with organizer and stem cell specification. We isolated mutations in two loci, SOL1 and SOL2, which suppress the CLE19 overexpression phenotype. sol2 plants display floral phenotypes reminiscent of clv weak alleles; these phenotypes suggest that components of a CLV pathway are shared in roots and shoots. SOL1 encodes a putative Zn(2+)-carboxypeptidase, which may be involved in ligand processing.


Nature | 2009

Organ regeneration does not require a functional stem cell niche in plants.

Giovanni Sena; Xiaoning Wang; Hsiao Yun Liu; Hugo Hofhuis; Kenneth D. Birnbaum

Plants rely on the maintenance of stem cell niches at their apices for the continuous growth of roots and shoots. However, although the developmental plasticity of plant cells has been demonstrated, it is not known whether the stem cell niche is required for organogenesis. Here we explore the capacity of a broad range of differentiating cells to regenerate an organ without the activity of a stem cell niche. Using a root-tip regeneration system in Arabidopsis thaliana to track the molecular and functional recovery of cell fates, we show that re-specification of lost cell identities begins within hours of excision and that the function of specialized cells is restored within one day. Critically, regeneration proceeds in plants with mutations that fail to maintain the stem cell niche. These results show that stem-cell-like properties that mediate complete organ regeneration are dispersed in plant meristems and are not restricted to niches, which nonetheless seem to be necessary for indeterminate growth. This regenerative reprogramming of an entire organ without transition to a stereotypical stem cell environment has intriguing parallels to recent reports of induced transdifferentiation of specific cell types in the adult organs of animals.


eLife | 2015

MorphoGraphX: A platform for quantifying morphogenesis in 4D

Pierre Barbier de Reuille; Anne-Lise Routier-Kierzkowska; Daniel Kierzkowski; George W. Bassel; Thierry Schüpbach; Gerardo Tauriello; Namrata Bajpai; Sören Strauss; Alain Weber; Annamaria Kiss; Agata Burian; Hugo Hofhuis; Aleksandra Sapala; Marcin Lipowczan; Maria Heimlicher; Sarah Robinson; Emmanuelle Bayer; Konrad Basler; Petros Koumoutsakos; Adrienne H. K. Roeder; Tinri Aegerter-Wilmsen; Naomi Nakayama; Miltos Tsiantis; Angela Hay; Dorota Kwiatkowska; Ioannis Xenarios; Cris Kuhlemeier; Richard S. Smith

Morphogenesis emerges from complex multiscale interactions between genetic and mechanical processes. To understand these processes, the evolution of cell shape, proliferation and gene expression must be quantified. This quantification is usually performed either in full 3D, which is computationally expensive and technically challenging, or on 2D planar projections, which introduces geometrical artifacts on highly curved organs. Here we present MorphoGraphX (www.MorphoGraphX.org), a software that bridges this gap by working directly with curved surface images extracted from 3D data. In addition to traditional 3D image analysis, we have developed algorithms to operate on curved surfaces, such as cell segmentation, lineage tracking and fluorescence signal quantification. The softwares modular design makes it easy to include existing libraries, or to implement new algorithms. Cell geometries extracted with MorphoGraphX can be exported and used as templates for simulation models, providing a powerful platform to investigate the interactions between shape, genes and growth. DOI: http://dx.doi.org/10.7554/eLife.05864.001


Current Biology | 2011

Arabidopsis PLETHORA transcription factors control phyllotaxis.

Kalika Prasad; Stephen P. Grigg; Michalis Barkoulas; Ram Kishor Yadav; Gabino F. Sanchez-Perez; Violaine Pinon; Ikram Blilou; Hugo Hofhuis; Pankaj Dhonukshe; Carla Galinha; Ari Pekka Mähönen; Wally H. Müller; Smita Raman; Arie J. Verkleij; Berend Snel; G. Venugopala Reddy; Miltos Tsiantis; Ben Scheres

The pattern of plant organ initiation at the shoot apical meristem (SAM), termed phyllotaxis, displays regularities that have long intrigued botanists and mathematicians alike. In the SAM, the central zone (CZ) contains a population of stem cells that replenish the surrounding peripheral zone (PZ), where organs are generated in regular patterns. These patterns differ between species and may change in response to developmental or environmental cues [1]. Expression analysis of auxin efflux facilitators of the PIN-FORMED (PIN) family combined with modeling of auxin transport has indicated that organ initiation is associated with intracellular polarization of PIN proteins and auxin accumulation [2-10]. However, regulators that modulate PIN activity to determine phyllotactic patterns have hitherto been unknown. Here we reveal that three redundantly acting PLETHORA (PLT)-like AP2 domain transcription factors control shoot organ positioning in the model plant Arabidopsis thaliana. Loss of PLT3, PLT5, and PLT7 function leads to nonrandom, metastable changes in phyllotaxis. Phyllotactic changes in plt3plt5plt7 mutants are largely attributable to misregulation of PIN1 and can be recapitulated by reducing PIN1 dosage, revealing that PLT proteins are key regulators of PIN1 activity in control of phyllotaxis.


Developmental Cell | 2008

Key Divisions in the Early Arabidopsis Embryo Require POL and PLL1 Phosphatases to Establish the Root Stem Cell Organizer and Vascular Axis

Sang-Kee Song; Hugo Hofhuis; Myeong Min Lee; Steven E. Clark

Arabidopsis development proceeds from three stem cell populations located at the shoot, flower, and root meristems. The relationship between the highly related shoot and flower stem cells and the very divergent root stem cells has been unclear. We show that the related phosphatases POL and PLL1 are required for all three stem cell populations. pol pll1 mutant embryos lack key asymmetric divisions that give rise to the root stem cell organizer and the central vascular axis. Instead, these cells divide in a superficially symmetric fashion in pol pll1 embryos, leading to a loss of embryonic and postembryonic root stem cells and vascular specification. We present data that show that POL/PLL1 drive root stem cell specification by promoting expression of the WUS homolog WOX5. We propose that POL and PLL1 are required for the proper divisions of shoot, flower, and root stem cell organizers, WUS/WOX5 gene expression, and stem cell maintenance.


Current Biology | 2013

Phyllotaxis and Rhizotaxis in Arabidopsis Are Modified by Three PLETHORA Transcription Factors

Hugo Hofhuis; Marta Laskowski; Yujuan Du; Kalika Prasad; Stephen P. Grigg; Violaine Pinon; Ben Scheres

BACKGROUND The juxtaposition of newly formed primordia in the root and shoot differs greatly, but their formation in both contexts depends on local accumulation of the signaling molecule auxin. Whether the spacing of lateral roots along the main root and the arrangement of leaf primordia at the plant apex are controlled by related underlying mechanisms has remained unclear. RESULTS Here, we show that, in Arabidopsis thaliana, three transcriptional regulators implicated in phyllotaxis, PLETHORA3 (PLT3), PLT5, and PLT7, are expressed in incipient lateral root primordia where they are required for primordium development and lateral root emergence. Furthermore, all three PLT proteins prevent the formation of primordia close to one another, because, in their absence, successive lateral root primordia are frequently grouped in close longitudinal or radial clusters. The triple plt mutant phenotype is rescued by PLT-vYFP fusion proteins, which are expressed in the shoot meristem as well as the root, but not by expression of PLT7 in the shoot alone. Expression of all three PLT genes requires auxin response factors ARF7 and ARF19, and the reintroduction of PLT activity suffices to rescue lateral root formation in arf7,arf19. CONCLUSIONS Intriguingly PLT 3, PLT5, and PLT7 not only control the positioning of organs at the shoot meristem but also in the root; a striking observation that raises many evolutionary questions.


Cell | 2016

Morphomechanical Innovation Drives Explosive Seed Dispersal

Hugo Hofhuis; Derek E. Moulton; Thomas Lessinnes; Anne-Lise Routier-Kierzkowska; Richard J. Bomphrey; Gabriella Mosca; Hagen Peter Reinhardt; Penny Sarchet; Xiangchao Gan; Miltos Tsiantis; Yiannis Ventikos; Simon M. Walker; Alain Goriely; Richard S. Smith; Angela Hay

Summary How mechanical and biological processes are coordinated across cells, tissues, and organs to produce complex traits is a key question in biology. Cardamine hirsuta, a relative of Arabidopsis thaliana, uses an explosive mechanism to disperse its seeds. We show that this trait evolved through morphomechanical innovations at different spatial scales. At the organ scale, tension within the fruit wall generates the elastic energy required for explosion. This tension is produced by differential contraction of fruit wall tissues through an active mechanism involving turgor pressure, cell geometry, and wall properties of the epidermis. Explosive release of this tension is controlled at the cellular scale by asymmetric lignin deposition within endocarp b cells—a striking pattern that is strictly associated with explosive pod shatter across the Brassicaceae plant family. By bridging these different scales, we present an integrated mechanism for explosive seed dispersal that links evolutionary novelty with complex trait innovation. Video Abstract


Nature plants | 2016

The Cardamine hirsuta genome offers insight into the evolution of morphological diversity

Xiangchao Gan; Angela Hay; Michiel Kwantes; Georg Haberer; Asis Hallab; Raffaele Dello Ioio; Hugo Hofhuis; Bjorn Pieper; Maria Cartolano; Ulla Neumann; Lachezar A. Nikolov; Baoxing Song; Mohsen Hajheidari; Roman V. Briskine; Evangelia Kougioumoutzi; Daniela Vlad; Suvi K. Broholm; Jotun Hein; Khalid Meksem; David A. Lightfoot; Kentaro K. Shimizu; Rie Shimizu-Inatsugi; Martha Imprialou; David Kudrna; Rod A. Wing; Shusei Sato; Peter Huijser; Dmitry A. Filatov; Klaus F. X. Mayer; Richard Mott

Finding causal relationships between genotypic and phenotypic variation is a key focus of evolutionary biology, human genetics and plant breeding. To identify genome-wide patterns underlying trait diversity, we assembled a high-quality reference genome of Cardamine hirsuta, a close relative of the model plant Arabidopsis thaliana. We combined comparative genome and transcriptome analyses with the experimental tools available in C. hirsuta to investigate gene function and phenotypic diversification. Our findings highlight the prevalent role of transcription factors and tandem gene duplications in morphological evolution. We identified a specific role for the transcriptional regulators PLETHORA5/7 in shaping leaf diversity and link tandem gene duplication with differential gene expression in the explosive seed pod of C. hirsuta. Our work highlights the value of comparative approaches in genetically tractable species to understand the genetic basis for evolutionary change.

Collaboration


Dive into the Hugo Hofhuis's collaboration.

Top Co-Authors

Avatar

Ben Scheres

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ikram Blilou

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge