Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hugo Lana is active.

Publication


Featured researches published by Hugo Lana.


International Journal of Pharmaceutics | 2013

Functional benefits of PLGA particulates carrying VEGF and CoQ10 in an animal of myocardial ischemia

Teresa Simón-Yarza; Esther Tamayo; Carolina Benavides; Hugo Lana; Fabio R. Formiga; Charitra N. Grama; Carlos Ortiz-de-Solorzano; M. N. V. Ravi Kumar; Felipe Prosper; María J. Blanco-Prieto

Myocardial ischemia (MI) remains one of the leading causes of death worldwide. Angiogenic therapy with the vascular endothelial growth factor (VEGF) is a promising strategy to overcome hypoxia and its consequences. However, from the clinical data it is clear that fulfillment of the potential of VEGF warrants a better delivery strategy. On the other hand, the compelling evidences of the role of oxidative stress in diseases like MI encourage the use of antioxidant agents. Coenzyme Q10 (CoQ10) due to its role in the electron transport chain in the mitochondria seems to be a good candidate to manage MI but is associated with poor biopharmaceutical properties seeking better delivery approaches. The female Sprague Dawley rats were induced MI and were followed up with VEGF microparticles intramyocardially and CoQ10 nanoparticles orally or their combination with appropriate controls. Cardiac function was assessed by measuring ejection fraction before and after three months of therapy. Results demonstrate significant improvement in the ejection fraction after three months with both treatment forms individually; however the combination therapy failed to offer any synergism. In conclusion, VEGF microparticles and CoQ10 nanoparticles can be considered as promising strategies for managing MI.


Nanomedicine: Nanotechnology, Biology and Medicine | 2012

Complete inhibition of extranodal dissemination of lymphoma by edelfosine-loaded lipid nanoparticles

Ander Estella-Hermoso de Mendoza; Miguel Angel Campanero; Hugo Lana; Janny A. Villa-Pulgarin; Janis de la Iglesia-Vicente; Faustino Mollinedo; María J. Blanco-Prieto

BACKGROUND Lipid nanoparticles (LNs) made of synthetic lipids Compritol(®) 888 ATO and Precirol(®) ATO 5 were developed with an average size of 110.4 ± 2.1 and 103.1 ± 2.9 nm, and an encapsulation efficiency above 85% for both type of lipids. These LNs decrease the hemolytic toxicity of the drug by 90%. MATERIALS & METHODS Pharmacokinetic and biodistribution profiles of the drug were studied after intravenous and oral administration of edelfosine-containing LNs. RESULTS This provided an increase in relative oral bioavailability of 1500% after a single oral administration of drug-loaded LNs, maintaining edelfosine plasma levels over 7 days in contrast to a single oral administration of edelfosine solution, which presented a relative oral bioavailability of 10%. Moreover, edelfosine-loaded LNs showed a high accumulation of the drug in lymph nodes and resulted in slower tumor growth than the free drug in a murine lymphoma xenograft model, as well as potent extranodal dissemination inhibition.


Scientific Reports | 2016

Catheter-based Intramyocardial Injection of FGF1 or NRG1-loaded MPs Improves Cardiac Function in a Preclinical Model of Ischemia-Reperfusion

Elisa Garbayo; Juan J. Gavira; Manuel García de Yébenes; Beatriz Pelacho; Gloria Abizanda; Hugo Lana; María J. Blanco-Prieto; Felipe Prosper

Cardiovascular protein therapeutics such as neuregulin (NRG1) and acidic-fibroblast growth factor (FGF1) requires new formulation strategies that allow for sustained bioavailability of the drug in the infarcted myocardium. However, there is no FDA-approved injectable protein delivery platform due to translational concerns about biomaterial administration through cardiac catheters. We therefore sought to evaluate the efficacy of percutaneous intramyocardial injection of poly(lactic-co-glycolic acid) microparticles (MPs) loaded with NRG1 and FGF1 using the NOGA MYOSTAR injection catheter in a porcine model of ischemia-reperfusion. NRG1- and FGF1-loaded MPs were prepared using a multiple emulsion solvent-evaporation technique. Infarcted pigs were treated one week after ischemia-reperfusion with MPs containing NRG1, FGF1 or non-loaded MPs delivered via clinically-translatable percutaneous transendocardial-injection. Three months post-treatment, echocardiography indicated a significant improvement in systolic and diastolic cardiac function. Moreover, improvement in bipolar voltage and decrease in transmural infarct progression was demonstrated by electromechanical NOGA-mapping. Functional benefit was associated with an increase in myocardial vascularization and remodeling. These findings in a large animal model of ischemia-reperfusion demonstrate the feasibility and efficacy of using MPs as a delivery system for growth factors and provide strong evidence to move forward with clinical studies using therapeutic proteins combined with catheter-compatible biomaterials.


Antimicrobial Agents and Chemotherapy | 2013

Hydrophobic Gentamicin-Loaded Nanoparticles Are Effective against Brucella melitensis Infection in Mice

Edurne Imbuluzqueta; Carlos Gamazo; Hugo Lana; Miguel Angel Campanero; David Salas; Ana Gloria Gil; Elisa Elizondo; Nora Ventosa; Jaume Veciana; María J. Blanco-Prieto

ABSTRACT The clinical management of human brucellosis is still challenging and demands in vitro active antibiotics capable of targeting the pathogen-harboring intracellular compartments. A sustained release of the antibiotic at the site of infection would make it possible to reduce the number of required doses and thus the treatment-associated toxicity. In this study, a hydrophobically modified gentamicin, gentamicin-AOT [AOT is bis(2-ethylhexyl) sulfosuccinate sodium salt], was either microstructured or encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles. The efficacy of the formulations developed was studied both in vitro and in vivo. Gentamicin formulations reduced Brucella infection in experimentally infected THP-1 monocytes (>2-log10 unit reduction) when using clinically relevant concentrations (18 mg/liter). Moreover, in vivo studies demonstrated that gentamicin-AOT-loaded nanoparticles efficiently targeted the drug both to the liver and the spleen and maintained an antibiotic therapeutic concentration for up to 4 days in both organs. This resulted in an improved efficacy of the antibiotic in experimentally infected mice. Thus, while 14 doses of free gentamicin did not alter the course of the infection, only 4 doses of gentamicin-AOT-loaded nanoparticles reduced the splenic infection by 3.23 logs and eliminated it from 50% of the infected mice with no evidence of adverse toxic effects. These results strongly suggest that PLGA nanoparticles containing chemically modified hydrophobic gentamicin may be a promising alternative for the treatment of human brucellosis.


Journal of Chromatography B | 2013

Ultra high performance liquid chromatography-tandem mass spectrometry method for cyclosporine a quantification in biological samples and lipid nanosystems.

Melissa Guada; Edurne Imbuluzqueta; A. Estella-Hermoso de Mendoza; Hugo Lana; Maria del Carmen Dios-Viéitez; María J. Blanco-Prieto

Cyclosporine A (CyA) is an immunosuppressant cyclic undecapeptide used for the prevention of organ transplant rejection and in the treatment of several autoimmune disorders. An ultra high performance liquid chromatography-tandem mass spectrometry method (UHPLC-MS/MS) to quantify CyA in lipid nanosystems and mouse biological matrices (whole blood, kidneys, lungs, spleen, liver, heart, brain, stomach and intestine) was developed and fully validated. Chromatographic separation was performed on an Acquity UPLC(®) BEH C18 column with a gradient elution consisting of methanol and 2mM ammonium acetate aqueous solution containing 0.1% formic acid at a flow rate of 0.6mL/min. Amiodarone was used as internal standard (IS). Retention times of IS and CyA were 0.69min and 1.09min, respectively. Mass spectrometer operated in electrospray ionization positive mode (ESI+) and multiple reaction monitoring (MRM) transitions were detected, m/z 1220.69→1203.7 for CyA and m/z 646→58 for IS. The extraction method from biological samples consisted of a simple protein precipitation with 10% trichloroacetic acid aqueous solution and acetonitrile and 5μL of supernatant were directly injected into the UHPLC-MS/MS system. Linearity was observed between 0.001μg/mL-2.5μg/mL (r≥0.99) in all matrices. The precision expressed in coefficient of variation (CV) was below 11.44% and accuracy in bias ranged from -12.78% to 7.99% including methanol and biological matrices. Recovery in all cases was above 70.54% and some matrix effect was observed. CyA was found to be stable in post-extraction whole blood and liver homogenate samples exposed for 6h at room temperature and 72h at 4°C. The present method was successfully applied for quality control of lipid nanocarriers as well as in vivo studies in BALB/c mice.


International Journal of Pharmaceutics | 2014

Lipid nanoparticles protect from edelfosine toxicity in vivo.

Beatriz Lasa-Saracíbar; María Ángela Aznar; Hugo Lana; Ismael Aizpún; Ana Gloria Gil; María J. Blanco-Prieto

Edelfosine, an alkyl-lysophospholipid antitumor drug with severe side-effects, has previously been encapsulated into lipid nanoparticles (LN) with the purpose of improving their toxicity profile. LN are made of lipids recognized as safe by the Food and Drug Administration (FDA) and, therefore, these systems are generally considered as nontoxic vehicles. However, toxicity studies regarding the use of LN as vehicles for drug administration are limited. In the present study, we investigated the in vivo toxicity of free edelfosine, and the protection conferred by LN. The free drug, non-loaded LN and edelfosine-loaded LN were orally administered to mice. Our results show that the oral administration of the free drug at 4 times higher than the therapeutic dose caused the death of the animals within 72h. Moreover, histopathology revealed gastrointestinal toxicity and an immunosuppressive effect. In contrast, LN showed a protective effect against edelfosine toxicity even at the higher dose and were completely safe. LN are, therefore, a safe vehicle for the administration of edelfosine by the oral route. The nanosystems developed could be further used for the administration of other drugs.


International Journal of Pharmaceutics | 2016

Lipid nanoparticles enhance the absorption of cyclosporine A through the gastrointestinal barrier: In vitro and in vivo studies

Melissa Guada; Beatriz Lasa-Saracíbar; Hugo Lana; Maria del Carmen Dios-Viéitez; María J. Blanco-Prieto

In the present work, the feasibility of cyclosporine A lipid nanoparticles (CsA LN) for oral administration was investigated. Three CsA LN formulations were developed using Precirol as lipid matrix, one stabilized with Tween(®) 80 (Tw) and the other two with mixtures of phosphatidylcholine or Pluronic(®) F127 with taurocholate (Lec:TC and PL:TC, respectively). The physical characteristics of the LN were studied under gastrointestinal pH and their integrity was found to be dependent on the stabilizers. The in vitro intestinal permeability was assessed with a human colon adenocarcinoma cell model and in vivo pharmacokinetic and biodistribution studies were performed in Balb/c mice using Sandimmune Neoral(®) as reference. In vitro results showed the highest CsA permeability with the LN containing Lec:TC. In contrast, the best in vivo performance was achieved from the LN containing Tw. The bioavailability of CsA was matched and even enhanced with Precirol nanoparticles. This study suggests the suitability of LN as promising vehicles for CsA oral delivery.


European Journal of Pharmaceutics and Biopharmaceutics | 2016

Cyclosporine A lipid nanoparticles for oral administration: Pharmacodynamics and safety evaluation.

Melissa Guada; Hugo Lana; Ana Gloria Gil; Maria del Carmen Dios-Viéitez; María J. Blanco-Prieto

The pharmacodynamic effect and the safety of cyclosporine A lipid nanoparticles (CsA LN) for oral administration were investigated using Sandimmune Neoral® as reference. First, the biocompatibility of the unloaded LN on Caco-2 cells was demonstrated. The pharmacodynamic response and blood levels of CsA were studied in Balb/c mice after 5 and 10 days of daily oral administration equivalent to 5 and 15 mg/kg of CsA in different formulations. The in vivo nephrotoxicity after 15 days of treatment at the high dose was also evaluated. The results showed a significant decrease in lymphocyte count (indicator of immunosuppression) for the CsA LN groups which was not observed with Sandimmune Neoral®. CsA blood levels remained constant over the time after treatment with LN, whereas a proportional increase in drug blood concentration was observed with Sandimmune Neoral®. Therefore, CsA LN exhibited a better pharmacological response along with more predictable pharmacokinetic information, diminishing the risk of toxicity. Moreover, a nephroprotective effect against CsA related toxicity was observed in the histopathological evaluation when LN containing Tween® 80 were administered. Therefore, our preliminary findings suggest LN formulations would be a good alternative for CsA oral delivery, enhancing efficacy and reducing the risk of nephrotoxicity.


Journal of Materials Chemistry B | 2016

Biocompatible polymer–metal–organic framework composite patches for cutaneous administration of cosmetic molecules

Alfonso García Márquez; Tania Hidalgo; Hugo Lana; Denise Cunha; María J. Blanco-Prieto; Carmen Alvarez-Lorenzo; Cédric Boissière; Clément Sanchez; Christian Serre; Patricia Horcajada

Despite increasing interest in metal-organic frameworks (MOFs) in the biomedical field, developing specific formulations suitable for different administration routes is still a main challenge. Here, we propose a simple, fast and bio-friendly press-molding method for the preparation of cutaneous patches based on composites made from the drug nanocarrier MIL-100(Fe) and biopolymers. The physicochemical properties of the patches (structure, hydration, bioadhesive and swelling properties), as well as their encapsulation and release capabilities (both in ex vitro and ex vivo models), were evaluated using active ingredients such as the challenging cosmetic liporeductor, caffeine, and the model analgesic and anti-inflammatory drug, ibuprofen. In particular, very high caffeine loadings were entrapped within these cutaneous devices with progressive releases under simulated cutaneous physiological conditions as a consequence of the swelling of the hydrophilic patches. Despite the absence of any cutaneous bioadhesive character, these patches provided progressive and suitable permeation of their cosmetic cargo through the skin, interestingly reaching the targeted adipose tissue. This makes these cosmetic-containing composite MOF-based patches promising candidates for new cutaneous devices in cosmetic applications.


Biomaterials | 2016

Brain delivery of microencapsulated GDNF induces functional and structural recovery in parkinsonian monkeys

Elisa Garbayo; Eduardo Ansorena; Hugo Lana; María del Mar Carmona-Abellan; Irene Marcilla; José L. Lanciego; M. R. Luquin; María J. Blanco-Prieto

Collaboration


Dive into the Hugo Lana's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge