Hugo Oppelaar
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hugo Oppelaar.
European Neuropsychopharmacology | 2007
Cigdem Gelegen; David A. Collier; Iain C. Campbell; Hugo Oppelaar; José K. van den Heuvel; Roger A.H. Adan; Martien J.H. Kas
Food restricted rodents develop activity-based anorexia in the presence of a running wheel, characterised by increased physical activity, weight loss and decreased leptin levels. Here, we determined trait differences in the development of activity-based anorexia between C57BL/6J and DBA/2J inbred mouse lines previously reported as having low and high anxiety, respectively. C57BL/6J mice housed with running wheels and exposed to scheduled feeding reduced their wheel activity, in contrast to DBA/2J mice which exhibited increased behavioural activity under these conditions. Food restriction induced hypoleptinemia in both strains, but the decline in plasma leptin was stronger in DBA/2J mice and correlated with increased activity only in that strain. These data suggest that plasma leptin level dynamics rather than hypoleptinemia alone influences the development of activity-based anorexia and that recombinant inbred panels based on these progenitor lines offer opportunities for the identification of molecular determinants for anorexia nervosa related behavioural traits.
Genes, Brain and Behavior | 2008
Cigdem Gelegen; J van den Heuvel; David A. Collier; Iain C. Campbell; Hugo Oppelaar; E Hessel; Martien J.H. Kas
Increased physical activity and decreased motivation to eat are common features in anorexia nervosa. We investigated the development of these features and the potential implication of brain‐derived neurotrophic factor (BDNF) and dopaminergic signalling in their development in C57BL/6J and A/J inbred mice, using the ‘activity‐based anorexia’ model. In this model, mice on a restricted‐feeding schedule are given unlimited access to running wheels. We measured dopamine receptor D2 and BDNF expression levels in the caudate putamen and the hippocampus, respectively, using in situ hybridization. We found that in response to scheduled feeding, C57BL/6J mice reduced their running wheel activity and displayed food anticipatory activity prior to food intake from day 2 of scheduled feeding as an indication of motivation to eat. In contrast, A/J mice increased running wheel activity during scheduled feeding and lacked food anticipatory activity. These were accompanied by increased dopamine receptor D2 expression in the caudate putamen and reduced BDNF expression in the hippocampus. Consistent with human linkage and association studies on BDNF and dopamine receptor D2 in anorexia nervosa, our study shows that dopaminergic and BDNF signalling are altered as a function of susceptibility to activity‐based anorexia. Differences in gene expression and behaviour between A/J and C57BL/6J mice indicate that mouse genetic mapping populations based on these progenitor lines are valuable for identifying molecular determinants of anorexia‐related traits.
PLOS ONE | 2011
Simone de Jong; Martien J.H. Kas; Jeffrey Kiernan; Annetrude J G de Mooij-van Malsen; Hugo Oppelaar; Esther Janson; Igor Vukobradovic; Charles R. Farber; William L. Stanford; Roel A. Ophoff
In this study, we show that the covariance between behavior and gene expression in the brain can help further unravel the determinants of neurobehavioral traits. Previously, a QTL for novelty induced motor activity levels was identified on murine chromosome 15 using consomic strains. With the goal of narrowing down the linked region and possibly identifying the gene underlying the quantitative trait, gene expression data from this F2-population was collected and used for expression QTL analysis. While genetic variation in these mice was limited to chromosome 15, eQTL analysis of gene expression showed strong cis-effects as well as trans-effects elsewhere in the genome. Using weighted gene co-expression network analysis, we were able to identify modules of co-expressed genes related to novelty induced motor activity levels. In eQTL analyses, the expression of Ly6a (a.k.a. Sca-1) was found to be cis-regulated by chromosome 15. Ly6a also surfaced in a group of genes resulting from the network analysis that was correlated with behavior. Behavioral analysis of Ly6a knock-out mice revealed reduced novelty induced motor activity levels when compared to wild type controls, confirming functional importance of Ly6a in this behavior, possibly through regulating other genes in a pathway. This study shows that gene expression profiling can be used to narrow down a previously identified behavioral QTL in mice, providing support for Ly6a as a candidate gene for functional involvement in novelty responsiveness.
Biological Psychiatry | 2009
Annetrude J G de Mooij-van Malsen; Hein A. van Lith; Hugo Oppelaar; Judith Hendriks; Marina de Wit; Elzbieta Kostrzewa; Gerome Breen; David A. Collier; Berend Olivier; Martien J.H. Kas
BACKGROUND Identifying susceptibility genes for endophenotypes by studying analogous behaviors across species is an important strategy for understanding the pathophysiology underlying psychiatric disorders. This approach provides novel biological pathways plus validated animal models critical for selective drug development. One such endophenotype is avoidance behavior. METHODS In the present study, novel automated registration methods for longitudinal behavioral assessment in home cages are used to screen a panel of recently generated mouse chromosome substitution strains that are very powerful in quantitative trait loci (QTL) detection of complex traits. In this way, we identified chromosomes regulating avoidance behavior (increased sheltering preference) independent of motor activity levels (horizontal distance moved). Genetic information from the mouse QTL-interval was integrated with that from the homologous human linkage region for a mood disorder. RESULTS We genetically mapped a QTL for avoidance behavior on mouse chromosome 15, homologous with a human genome region (8q24) linked to bipolar disorder. Integrating the syntenic mouse QTL-interval with genotypes of 1868 BPD cases versus 14,311 control subjects revealed two associated genes (ADCY8 and KCNQ3). Adenylyl cyclase 8 (Adcy8) was differentially expressed in specific brain regions of mouse strains that differ in avoidance behavior levels. Finally, we showed that chronic infusion of the human mood stabilizer carbamazepine (that acts via adenylyl cyclase activity) significantly reduced mouse avoidance behavior, providing a further link between human mood disorders and this mouse home cage behavior. CONCLUSIONS Our data suggest that Adcy8 might encode a translational behavioral endophenotype of bipolar disorder.
Genes, Brain and Behavior | 2009
Martien J.H. Kas; J G de Mooij-van Malsen; M de Krom; K.L.I. van Gassen; H.A. van Lith; Berend Olivier; Hugo Oppelaar; Judith Hendriks; M. de Wit; M J A Groot Koerkamp; Frank C. P. Holstege; B.A. van Oost; P.N.E. de Graan
The generation of motor activity levels is under tight neural control to execute essential behaviors, such as movement toward food or for social interaction. To identify novel neurobiological mechanisms underlying motor activity levels, we studied a panel of chromosome substitution (CS) strains derived from mice with high (C57BL/6J strain) or low motor activity levels (A/J strain) using automated home cage behavioral registration. In this study, we genetically mapped the expression of baseline motor activity levels (horizontal distance moved) to mouse chromosome 1. Further genetic mapping of this trait revealed an 8.3‐Mb quantitative trait locus (QTL) interval. This locus is distinct from the QTL interval for open‐field anxiety‐related motor behavior on this chromosome. By data mining, an existing phenotypic and genotypic data set of 2445 genetically heterogeneous mice (http://gscan.well.ox.ac.uk/), we confirmed linkage to the peak marker at 79 970 253 bp and refined the QTL to a 312‐kb interval containing a single gene (A830043J08Rik). Sequence analysis showed a nucleotide deletion in the 3′ untranslated region of the Riken gene. Genome‐wide microarray gene expression profiling in brains of discordant F2 individuals from CS strain 1 showed a significant upregulation of Epha4 in low‐active F2 individuals. Inclusion of a genetic marker for Epha4 confirmed that this gene is located outside of the QTL interval. Both Epha4 and A830043J08Rik are expressed in brain motor circuits, and similar to Epha4 mutants, we found linkage between reduced motor neurons number and A/J chromosome 1. Our findings provide a novel QTL and a potential downstream target underlying motor circuitry development and the expression of physical activity levels.
European Neuropsychopharmacology | 2010
Cigdem Gelegen; Eneda Pjetri; Iain C. Campbell; David A. Collier; Hugo Oppelaar; Martien J.H. Kas
Excessive physical activity plays an important role in the progression of anorexia nervosa (AN) by accelerating weight loss during dietary restriction. To search for mechanisms underlying this trait, a panel of mouse chromosome substitution strains derived from C57BL/6J and A/J strains was exposed to a scheduled feeding paradigm and to voluntary running wheel (RW) access. Here, we showed that A/J chromosomes 4, 12 and 13 contribute to the development of a disrupted RW activity in response to daily restricted feeding. This pattern is characterized by intense RW activity during the habitual rest phase and leads to accelerated body weight loss. Regions on mouse chromosomes 4, 12 and 13 display homology with regions on human chromosomes linked with anxiety and obsessionality in AN cohorts. Therefore, our data open new roads for interspecies genetic studies of AN and for unraveling novel mechanisms and potential effective treatment strategies for these neurobehavioral traits.
Biological Psychiatry | 2015
Hilgo Bruining; Asuka Matsui; Asami Oguro-Ando; René S. Kahn; Heleen M. van‘t Spijker; Guus Akkermans; Oliver Stiedl; Herman van Engeland; Bastijn Koopmans; Hein A. van Lith; Hugo Oppelaar; Liselotte Tieland; Lourens J. Nonkes; Takeshi Yagi; Ryosuke Kaneko; J. Peter H. Burbach; Nobuhiko Yamamoto; Martien J.H. Kas
BACKGROUND Quantitative genetic analysis of basic mouse behaviors is a powerful tool to identify novel genetic phenotypes contributing to neurobehavioral disorders. Here, we analyzed genetic contributions to single-trial, long-term social and nonsocial recognition and subsequently studied the functional impact of an identified candidate gene on behavioral development. METHODS Genetic mapping of single-trial social recognition was performed in chromosome substitution strains, a sophisticated tool for detecting quantitative trait loci (QTL) of complex traits. Follow-up occurred by generating and testing knockout (KO) mice of a selected QTL candidate gene. Functional characterization of these mice was performed through behavioral and neurological assessments across developmental stages and analyses of gene expression and brain morphology. RESULTS Chromosome substitution strain 14 mapping studies revealed an overlapping QTL related to long-term social and object recognition harboring Pcdh9, a cell-adhesion gene previously associated with autism spectrum disorder. Specific long-term social and object recognition deficits were confirmed in homozygous (KO) Pcdh9-deficient mice, while heterozygous mice only showed long-term social recognition impairment. The recognition deficits in KO mice were not associated with alterations in perception, multi-trial discrimination learning, sociability, behavioral flexibility, or fear memory. Rather, KO mice showed additional impairments in sensorimotor development reflected by early touch-evoked biting, rotarod performance, and sensory gating deficits. This profile emerged with structural changes in deep layers of sensory cortices, where Pcdh9 is selectively expressed. CONCLUSIONS This behavior-to-gene study implicates Pcdh9 in cognitive functions required for long-term social and nonsocial recognition. This role is supported by the involvement of Pcdh9 in sensory cortex development and sensorimotor phenotypes.
PLOS ONE | 2012
Eneda Pjetri; Ria de Haas; Simone de Jong; Cigdem Gelegen; Hugo Oppelaar; Linda A. W. Verhagen; Marinus J.C. Eijkemans; Roger A.H. Adan; Berend Olivier; Martien J.H. Kas
Animal studies are very useful in detection of early disease indicators and in unravelling the pathophysiological processes underlying core psychiatric disorder phenotypes. Early indicators are critical for preventive and efficient treatment of progressive psychiatric disorders like anorexia nervosa. Comparable to physical hyperactivity observed in anorexia nervosa patients, in the activity-based anorexia rodent model, mice and rats express paradoxical high voluntary wheel running activity levels when food restricted. Eleven inbred mouse strains and outbred Wistar WU rats were exposed to the activity-based anorexia model in search of identifying susceptibility predictors. Body weight, food intake and wheel running activity levels of each individual mouse and rat were measured. Mouse strains and rats with high wheel running activity levels during food restriction exhibited accelerated body weight loss. Linear mixed models for repeated measures analysis showed that baseline wheel running activity levels preceding the scheduled food restriction phase strongly predicted activity-based anorexia susceptibility (mice: Beta = −0.0158 (±0.003 SE), P<0.0001; rats: Beta = −0.0242 (±0.004 SE), P<0.0001) compared to other baseline parameters. These results suggest that physical activity levels play an important role in activity-based anorexia susceptibility in different rodent species with genetically diverse background. These findings support previous retrospective studies on physical activity levels in anorexia nervosa patients and indicate that pre-morbid physical activity levels could reflect an early indicator for disease severity.
European Neuropsychopharmacology | 2012
Ria de Haas; Amir Seddik; Hugo Oppelaar; Herman G.M. Westenberg; Martien J.H. Kas
Obsessive-compulsive disorder (OCD) is a chronic and complex psychiatric disorder with a lifetime prevalence of 2-3%. Recent work has shown that OCD rituals were not only characterized by a high rate of repetition but also by an increased behavioral repertoire due to additional non-functional unique acts. These two behavioral characteristics may provide an ethological basis for studying compulsive behavior in an animal model of OCD. Here, quinpirole induced behavior (so far only investigated in rats) has been studied in A/J and C57BL/6J mice by using behavioral pattern analysis. The aim of this study is to investigate whether genetic background is mediating this behavior. Results showed that open field motor activity levels of saline treated C57BL/6J mice was significantly higher compared to A/J treated saline mice. Long-term quinpirole treatment increased open field motor activity levels in A/J, but not in C57BL/6J. Quinpirole treatment induced a strain dependent difference in behavioral repertoire. There was a dose dependent increase in the number of different behavioral patterns in A/J, whereas, in C57BL/6J there was a dose dependent decrease. This data suggest that genetic background is important in expressing quinpirole induced compulsive like behavior. Following quinpirole treatment, A/J mice express a greater behavioral repertoire with a high rate of repetition. This phenotype resembles that of OCD rituals in patients and indicates that this strain is very interesting to further validate for studying neurobiological mechanisms of compulsive behavior.
Behavior Genetics | 2009
J G de Mooij-van Malsen; H.A. van Lith; Hugo Oppelaar; Berend Olivier; Martien J.H. Kas
The expression of motor activity levels in response to novel situations is under complex genetic and environmental control. Several genetic loci have been implicated in the regulation of this behavioral phenotype, but their relationship to epigenetic and epistatic interactions is relatively unknown. Here, we report on a quantitative trait locus (QTL) on mouse chromosome 1 for novelty-induced motor activity in the open field, using chromosome substitution strains derived from a high active host strain (C57BL/6J) and a low active donor strain (A/J). The QTL for open field (horizontal distance moved) peaked at the location of Kcnj9, however, QTL detection was initially masked by an interplay of both grandparent genetic origin and genetic co-factors influencing behavior on chromosome 1. Our findings indicate that epigenetic interactions can play an important role in the identification of behavioral QTLs and must be taken into consideration when applying behavioral genetic strategies.