Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hugo Y. K. Lam is active.

Publication


Featured researches published by Hugo Y. K. Lam.


Nature | 2011

Mapping copy number variation by population-scale genome sequencing

Ryan E. Mills; Klaudia Walter; Chip Stewart; Robert E. Handsaker; Ken Chen; Can Alkan; Alexej Abyzov; Seungtai Yoon; Kai Ye; R. Keira Cheetham; Asif T. Chinwalla; Donald F. Conrad; Yutao Fu; Fabian Grubert; Iman Hajirasouliha; Fereydoun Hormozdiari; Lilia M. Iakoucheva; Zamin Iqbal; Shuli Kang; Jeffrey M. Kidd; Miriam K. Konkel; Joshua M. Korn; Ekta Khurana; Deniz Kural; Hugo Y. K. Lam; Jing Leng; Ruiqiang Li; Yingrui Li; Chang-Yun Lin; Ruibang Luo

Genomic structural variants (SVs) are abundant in humans, differing from other forms of variation in extent, origin and functional impact. Despite progress in SV characterization, the nucleotide resolution architecture of most SVs remains unknown. We constructed a map of unbalanced SVs (that is, copy number variants) based on whole genome DNA sequencing data from 185 human genomes, integrating evidence from complementary SV discovery approaches with extensive experimental validations. Our map encompassed 22,025 deletions and 6,000 additional SVs, including insertions and tandem duplications. Most SVs (53%) were mapped to nucleotide resolution, which facilitated analysing their origin and functional impact. We examined numerous whole and partial gene deletions with a genotyping approach and observed a depletion of gene disruptions amongst high frequency deletions. Furthermore, we observed differences in the size spectra of SVs originating from distinct formation mechanisms, and constructed a map of SV hotspots formed by common mechanisms. Our analytical framework and SV map serves as a resource for sequencing-based association studies.


Cell | 2012

Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes

Rui Chen; George Mias; Jennifer Li-Pook-Than; Lihua Jiang; Hugo Y. K. Lam; Rong Chen; Elana Miriami; Konrad J. Karczewski; Manoj Hariharan; Frederick E. Dewey; Yong Cheng; Michael J. Clark; Hogune Im; Lukas Habegger; Suganthi Balasubramanian; Maeve O'Huallachain; Joel T. Dudley; Sara Hillenmeyer; Rajini Haraksingh; Donald Sharon; Ghia Euskirchen; Phil Lacroute; Keith Bettinger; Alan P. Boyle; Maya Kasowski; Fabian Grubert; Scott Seki; Marco Garcia; Michelle Whirl-Carrillo; Mercedes Gallardo

Personalized medicine is expected to benefit from combining genomic information with regular monitoring of physiological states by multiple high-throughput methods. Here, we present an integrative personal omics profile (iPOP), an analysis that combines genomic, transcriptomic, proteomic, metabolomic, and autoantibody profiles from a single individual over a 14 month period. Our iPOP analysis revealed various medical risks, including type 2 diabetes. It also uncovered extensive, dynamic changes in diverse molecular components and biological pathways across healthy and diseased conditions. Extremely high-coverage genomic and transcriptomic data, which provide the basis of our iPOP, revealed extensive heteroallelic changes during healthy and diseased states and an unexpected RNA editing mechanism. This study demonstrates that longitudinal iPOP can be used to interpret healthy and diseased states by connecting genomic information with additional dynamic omics activity.


Nature | 2015

An integrated map of structural variation in 2,504 human genomes

Peter H. Sudmant; Tobias Rausch; Eugene J. Gardner; Robert E. Handsaker; Alexej Abyzov; John Huddleston; Zhang Y; Kai Ye; Goo Jun; Markus His Yang Fritz; Miriam K. Konkel; Ankit Malhotra; Adrian M. Stütz; Xinghua Shi; Francesco Paolo Casale; Jieming Chen; Fereydoun Hormozdiari; Gargi Dayama; Ken Chen; Maika Malig; Mark Chaisson; Klaudia Walter; Sascha Meiers; Seva Kashin; Erik Garrison; Adam Auton; Hugo Y. K. Lam; Xinmeng Jasmine Mu; Can Alkan; Danny Antaki

Structural variants are implicated in numerous diseases and make up the majority of varying nucleotides among human genomes. Here we describe an integrated set of eight structural variant classes comprising both balanced and unbalanced variants, which we constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks in 26 human populations. Analysing this set, we identify numerous gene-intersecting structural variants exhibiting population stratification and describe naturally occurring homozygous gene knockouts that suggest the dispensability of a variety of human genes. We demonstrate that structural variants are enriched on haplotypes identified by genome-wide association studies and exhibit enrichment for expression quantitative trait loci. Additionally, we uncover appreciable levels of structural variant complexity at different scales, including genic loci subject to clusters of repeated rearrangement and complex structural variants with multiple breakpoints likely to have formed through individual mutational events. Our catalogue will enhance future studies into structural variant demography, functional impact and disease association.


Nature Biotechnology | 2011

Performance comparison of exome DNA sequencing technologies

Michael J. Clark; Rui Chen; Hugo Y. K. Lam; Konrad J. Karczewski; Rong Chen; Ghia Euskirchen; Atul J. Butte; Michael Snyder

Whole exome sequencing by high-throughput sequencing of target-enriched genomic DNA (exome-seq) has become common in basic and translational research as a means of interrogating the interpretable part of the human genome at relatively low cost. We present a comparison of three major commercial exome sequencing platforms from Agilent, Illumina and Nimblegen applied to the same human blood sample. Our results suggest that the Nimblegen platform, which is the only one to use high-density overlapping baits, covers fewer genomic regions than the other platforms but requires the least amount of sequencing to sensitively detect small variants. Agilent and Illumina are able to detect a greater total number of variants with additional sequencing. Illumina captures untranslated regions, which are not targeted by the Nimblegen and Agilent platforms. We also compare exome sequencing and whole genome sequencing (WGS) of the same sample, demonstrating that exome sequencing can detect additional small variants missed by WGS.


Science Signaling | 2010

Deciphering Protein Kinase Specificity Through Large-Scale Analysis of Yeast Phosphorylation Site Motifs

Janine Mok; Philip M. Kim; Hugo Y. K. Lam; Stacy Piccirillo; Xiuqiong Zhou; Grace R. Jeschke; Douglas L. Sheridan; Sirlester A. Parker; Ved Desai; Miri Jwa; Elisabetta Cameroni; Hengyao Niu; Matthew C. Good; Attila Reményi; Jia Lin Nianhan Ma; Yi Jun Sheu; Holly E. Sassi; Richelle Sopko; Clarence S.M. Chan; Claudio De Virgilio; Nancy M. Hollingsworth; Wendell A. Lim; David F. Stern; Bruce Stillman; Brenda Andrews; Mark Gerstein; Michael Snyder; Benjamin E. Turk

A high-throughput peptide array approach reveals insight into kinase substrates and specificity. Exploring Kinase Selectivity Kinases are master regulators of cellular behavior. Because of the large number of kinases and the even larger number of substrates, approaches that permit global analysis are valuable tools for investigating kinase biology. Mok et al. identified the phosphorylation site selectivity for 61 of the 122 kinases in Saccharomyces cerevisiae by screening a miniaturized peptide library. By integrating these data with other data sets and structural information, they revealed information about the relationship between kinase catalytic residues and substrate selectivity. They also identified and experimentally verified substrates for kinases, including one for which limited functional information was previously available, showing the potential for this type of analysis as a launching point for the exploration of the biological functions of kinases. Phosphorylation is a universal mechanism for regulating cell behavior in eukaryotes. Although protein kinases target short linear sequence motifs on their substrates, the rules for kinase substrate recognition are not completely understood. We used a rapid peptide screening approach to determine consensus phosphorylation site motifs targeted by 61 of the 122 kinases in Saccharomyces cerevisiae. By correlating these motifs with kinase primary sequence, we uncovered previously unappreciated rules for determining specificity within the kinase family, including a residue determining P−3 arginine specificity among members of the CMGC [CDK (cyclin-dependent kinase), MAPK (mitogen-activated protein kinase), GSK (glycogen synthase kinase), and CDK-like] group of kinases. Furthermore, computational scanning of the yeast proteome enabled the prediction of thousands of new kinase-substrate relationships. We experimentally verified several candidate substrates of the Prk1 family of kinases in vitro and in vivo and identified a protein substrate of the kinase Vhs1. Together, these results elucidate how kinase catalytic domains recognize their phosphorylation targets and suggest general avenues for the identification of previously unknown kinase substrates across eukaryotes.


Nature Biotechnology | 2012

Performance comparison of whole-genome sequencing platforms

Hugo Y. K. Lam; Michael J. Clark; Rui Chen; Rong Chen; Georges Natsoulis; Maeve O'Huallachain; Frederick E. Dewey; Lukas Habegger; Euan A. Ashley; Mark Gerstein; Atul J. Butte; Hanlee P. Ji; Michael Snyder

Whole-genome sequencing is becoming commonplace, but the accuracy and completeness of variant calling by the most widely used platforms from Illumina and Complete Genomics have not been reported. Here we sequenced the genome of an individual with both technologies to a high average coverage of ∼76×, and compared their performance with respect to sequence coverage and calling of single-nucleotide variants (SNVs), insertions and deletions (indels). Although 88.1% of the ∼3.7 million unique SNVs were concordant between platforms, there were tens of thousands of platform-specific calls located in genes and other genomic regions. In contrast, 26.5% of indels were concordant between platforms. Target enrichment validated 92.7% of the concordant SNVs, whereas validation by genotyping array revealed a sensitivity of 99.3%. The validation experiments also suggested that >60% of the platform-specific variants were indeed present in the genome. Our results have important implications for understanding the accuracy and completeness of the genome sequencing platforms.


Nature | 2013

A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis

Paola Picotti; Mathieu Clément-Ziza; Hugo Y. K. Lam; David S. Campbell; Alexander Schmidt; Eric W. Deutsch; Hannes L. Röst; Zhongwei Sun; Oliver Rinner; Lukas Reiter; Qin Shen; Jacob J. Michaelson; Andreas Frei; Simon Alberti; Ulrike Kusebauch; Bernd Wollscheid; Robert L. Moritz; Andreas Beyer; Ruedi Aebersold

Experience from different fields of life sciences suggests that accessible, complete reference maps of the components of the system under study are highly beneficial research tools. Examples of such maps include libraries of the spectroscopic properties of molecules, or databases of drug structures in analytical or forensic chemistry. Such maps, and methods to navigate them, constitute reliable assays to probe any sample for the presence and amount of molecules contained in the map. So far, attempts to generate such maps for any proteome have failed to reach complete proteome coverage. Here we use a strategy based on high-throughput peptide synthesis and mass spectrometry to generate an almost complete reference map (97% of the genome-predicted proteins) of the Saccharomyces cerevisiae proteome. We generated two versions of this mass-spectrometric map, one supporting discovery-driven (shotgun) and the other supporting hypothesis-driven (targeted) proteomic measurements. Together, the two versions of the map constitute a complete set of proteomic assays to support most studies performed with contemporary proteomic technologies. To show the utility of the maps, we applied them to a protein quantitative trait locus (QTL) analysis, which requires precise measurement of the same set of peptides over a large number of samples. Protein measurements over 78 S. cerevisiae strains revealed a complex relationship between independent genetic loci, influencing the levels of related proteins. Our results suggest that selective pressure favours the acquisition of sets of polymorphisms that adapt protein levels but also maintain the stoichiometry of functionally related pathway members.


PLOS Genetics | 2011

A Comprehensive Map of Mobile Element Insertion Polymorphisms in Humans

Chip Stewart; Deniz Kural; Michael Stromberg; Jerilyn A. Walker; Miriam K. Konkel; Adrian M. Stütz; Alexander E. Urban; Fabian Grubert; Hugo Y. K. Lam; Wan Ping Lee; Michele A. Busby; Amit Indap; Erik Garrison; Chad D. Huff; Jinchuan Xing; Michael Snyder; Lynn B. Jorde; Mark A. Batzer; Jan O. Korbel; Gabor T. Marth

As a consequence of the accumulation of insertion events over evolutionary time, mobile elements now comprise nearly half of the human genome. The Alu, L1, and SVA mobile element families are still duplicating, generating variation between individual genomes. Mobile element insertions (MEI) have been identified as causes for genetic diseases, including hemophilia, neurofibromatosis, and various cancers. Here we present a comprehensive map of 7,380 MEI polymorphisms from the 1000 Genomes Project whole-genome sequencing data of 185 samples in three major populations detected with two detection methods. This catalog enables us to systematically study mutation rates, population segregation, genomic distribution, and functional properties of MEI polymorphisms and to compare MEI to SNP variation from the same individuals. Population allele frequencies of MEI and SNPs are described, broadly, by the same neutral ancestral processes despite vastly different mutation mechanisms and rates, except in coding regions where MEI are virtually absent, presumably due to strong negative selection. A direct comparison of MEI and SNP diversity levels suggests a differential mobile element insertion rate among populations.


Nature Biotechnology | 2010

Nucleotide-resolution analysis of structural variants using BreakSeq and a breakpoint library

Hugo Y. K. Lam; Xinmeng Jasmine Mu; Adrian M. Stütz; Andrea Tanzer; Philip Cayting; Michael Snyder; Philip M. Kim; Jan O. Korbel; Mark Gerstein

Structural variants (SVs) are a major source of human genomic variation; however, characterizing them at nucleotide resolution remains challenging. Here we assemble a library of breakpoints at nucleotide resolution from collating and standardizing ~2,000 published SVs. For each breakpoint, we infer its ancestral state (through comparison to primate genomes) and its mechanism of formation (e.g., nonallelic homologous recombination, NAHR). We characterize breakpoint sequences with respect to genomic landmarks, chromosomal location, sequence motifs and physical properties, finding that the occurrence of insertions and deletions is more balanced than previously reported and that NAHR-formed breakpoints are associated with relatively rigid, stable DNA helices. Finally, we demonstrate an approach, BreakSeq, for scanning the reads from short-read sequenced genomes against our breakpoint library to accurately identify previously overlooked SVs, which we then validate by PCR. As new data become available, we expect our BreakSeq approach will become more sensitive and facilitate rapid SV genotyping of personal genomes.


PLOS Genetics | 2010

Genome-Wide Identification of Binding Sites Defines Distinct Functions for Caenorhabditis elegans PHA-4/FOXA in Development and Environmental Response

Mei-fang Zhong; Wei Niu; Zhi John Lu; Mihail Sarov; John I. Murray; J. Janette; Debasish Raha; Karyn L. Sheaffer; Hugo Y. K. Lam; E. Preston; Cindie Slightham; LaDeana W. Hillier; Trisha J. Brock; Ashish Agarwal; Raymond K. Auerbach; Anthony A. Hyman; Mark Gerstein; Susan E. Mango; Stuart K. Kim; Robert H. Waterston; Valerie Reinke; Michael Snyder

Transcription factors are key components of regulatory networks that control development, as well as the response to environmental stimuli. We have established an experimental pipeline in Caenorhabditis elegans that permits global identification of the binding sites for transcription factors using chromatin immunoprecipitation and deep sequencing. We describe and validate this strategy, and apply it to the transcription factor PHA-4, which plays critical roles in organ development and other cellular processes. We identified thousands of binding sites for PHA-4 during formation of the embryonic pharynx, and also found a role for this factor during the starvation response. Many binding sites were found to shift dramatically between embryos and starved larvae, from developmentally regulated genes to genes involved in metabolism. These results indicate distinct roles for this regulator in two different biological processes and demonstrate the versatility of transcription factors in mediating diverse biological roles.

Collaboration


Dive into the Hugo Y. K. Lam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge