Hui-Hui Wang
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hui-Hui Wang.
Physical Review Letters | 2016
Y. W. Sun; Y. Liang; Yueqiang Liu; Shuai Gu; Xu Yang; W. Guo; Tonghui Shi; M. Jia; L. Wang; B. Lyu; C. Zhou; A.D. Liu; Qing Zang; H. Liu; Nan Chu; Hui-Hui Wang; T. Zhang; J. Qian; Liuwei Xu; Kaiyang He; D. M. Chen; B. Shen; X.Z. Gong; X. Ji; Shouxin Wang; M. Qi; Yong Song; Q.P. Yuan; Zhi-Cai Sheng; Ge Gao
Evidence of a nonlinear transition from mitigation to suppression of the edge localized mode (ELM) by using resonant magnetic perturbations (RMPs) in the EAST tokamak is presented. This is the first demonstration of ELM suppression with RMPs in slowly rotating plasmas with dominant radio-frequency wave heating. Changes of edge magnetic topology after the transition are indicated by a gradual phase shift in the plasma response field from a linear magneto hydro dynamics modeling result to a vacuum one and a sudden increase of three-dimensional particle flux to the divertor. The transition threshold depends on the spectrum of RMPs and plasma rotation as well as perturbation amplitude. This means that edge topological changes resulting from nonlinear plasma response plays a key role in the suppression of ELM with RMPs.
Plasma Physics and Controlled Fusion | 2016
Xu Yang; Youwen Sun; Yueqiang Liu; Shuai Gu; Yue Liu; Hui-Hui Wang; Lina Zhou; W. Guo
Sustained mitigation and/or suppression of type-I edge localized modes (ELMs) has been achieved in EAST high-confinement plasmas, utilizing the resonant magnetic perturbation (RMP) fields produced by two rows of magnetic coils located just inside the vacuum vessel. Systematic toroidal modelling of the plasma response to these RMP fields with various coil configurations (with dominant toroidal mode number n = 1, 2, 3, 4) in EAST is, for the first time, carried out by using the MARS-F code (Liu et al 2000 Phys. Plasmas 7 3681), with results reported here. In particular, the plasma response is computed with varying coil phasing (the toroidal phase difference of the coil currents) between the upper and lower rows of coils, from 0 to 360°. Four figures of merit, constructed based on the MARS-F computations, are used to determine the optimal coil phasing. The modelled results, taking into account the plasma response, agree well with the experimental observations in terms of the coil phasing for both the mitigated and the suppressed ELM cases in EAST experiments. This study provides a crucial confirmation of the role of the plasma edge peeling response in ELM control, complementing similar studies carried out for other tokamak devices.
Nuclear Fusion | 2017
M. Jia; H.L. Zhao; Ge Gao; W. Guo; Yun Li; D. M. Chen; X. Ji; Y. W. Sun; Hui-Hui Wang; Yueqiang Liu; Kaiyang He; Baonian Wan; Ge Li; T. Zhang; Qing Zang; M. Qi; B. Shen; Shouxin Wang; Tonghui Shi; Liuwei Xu; B. Lyu; Y. Liu; Yong Song; Peng Fu; Q.P. Yuan; Y. Liang; Zhi-Cai Sheng; Lianzhou Wang; X.Z. Gong; J. Qian
A set of in-vessel resonant magnetic perturbation (RMP) coil has been recently installed in EAST. It can generate a range of spectrum, and there is a relatively large window for edge localized mode (ELM) control according to the vacuum field modeling of the edge magnetic island overlapping area. Observation of mitigation and suppression of ELM in slow rotating plasmas during the application of an n = 1 RMP is presented in this paper. Strong ELM mitigation effect is observed in neutral beam injection heating plasmas. The ELM frequency increases by a factor of 5, and the crash amplitude and the particle flux are effectively reduced by a similar factor. Clear density pump-out and magnetic braking effects are observed during the application of RMP. Footprint splitting is observed during ELM mitigation and agrees well with vacuum field modelling. Strong ELM mitigation happens after a second sudden drop of plasma density, which indicates the possible effect due to field penetration of the resonant harmonics near the pedestal top, where the electron perpendicular rotation becomes flat and close to zero after the application of RMP. ELM suppression is achieved in a resonant window during the scan of the n = 1 RMP spectrum in radio-frequency (RF) dominant heating plasmas. The best spectrum for ELM suppression is consistent with the resonant peak of RMP by taking into account of linear magnetohydrodynamics plasma response. There is no mode locking during the application of n = 1 RMP in ELMy H-mode plasmas, although the maximal coil current is applied.
Molecules | 2017
Hui-Hui Wang; Xiaoxiang Wen; Xueqin Zhang; Chuanfu Liu
Recently, IL/cosolvent systems have generated a lot of interest as cellulose-dissolving solvents and reaction media for various kinds of cellulose modification. In the present study, both 1-allyl-3-methylimidazolium chloride (AmimCl)/dimethyl sulfoxide (DMSO) and AmimCl/N,N-dimethylformamide (DMF) systems were employed to synthesize cellulose acetate by transesterification. Microcrystalline cellulose, 1,8-diazabicyclo[5.4.0]undec-7-ene and isopropenyl acetate were chosen as the raw material, catalyst and acetylation reagent, respectively. The results revealed that DMSO was a suitable cosolvent for the transesterification in the homogeneous solution. Moreover, DMSO had a positive effect on the reaction as the cosolvent under the given conditions and the degree of the substitution of cellulose acetate could be significantly enhanced through increasing the molar ratio of DMSO. The synthesized products were characterized by Fourier transform infrared (FT-IR) spectroscopy, 1H and 13C nuclear magnetic resonance spectroscopy (1H-NMR and 13C-NMR), correlation spectroscopy (COSY), heteronuclear single quantum correlation (HSQC) spectroscopy, and X-ray diffraction (XRD) to confirm the chemical and physical structure of the cellulose acetate generated. The thermal properties were also evaluated using thermogravimetric analysis (TGA)/derivative thermogravimetry (DTG).
International Journal of Polymer Science | 2016
Hui-Hui Wang; Xueqin Zhang; Piao Long; Aiping Zhang; Chuanfu Liu; Run-Cang Sun
In order to elucidate the reaction behavior of cellulose component in bagasse, the homogeneous phthalation of bagasse was investigated comparatively with the isolated cellulose in 1-allyl-3-methylimidazium chloride (AmimCl) with phthalic anhydride (PA) at the dosage of 10–50 mmol/g. The phthalation degrees of bagasse and the isolated cellulose were in the range of 5.66% to 22.71% and 11.61% to 44.11%, respectively. A phthalation degree increase of cellulose was proportional to phthalic anhydride dosage due to its regular macromolecular structure and followed the equation . FT-IR and 2D HSQC NMR analyses confirmed the attachment of phthaloyl group. The phthalation reactivity of the three hydroxyls in the isolated cellulose followed the order of C-6 > C-2 > C-3, and the more selective phthalation to C-6 position was found in the cellulose component in bagasse. These results provide detailed understanding of the homogenous modification mechanism of lignocellulose.
Materials | 2017
Hui-Hui Wang; Wei Chen; Xueqin Zhang; Chuanfu Liu; Run-Cang Sun
The esterification of bagasse with glutaric anhydride could increase surface adhesion compatibility and the surface of derived polymers has the potential of immobilizing peptides or proteins for biomedical application. Due to its complicated components, the esterification mechanism of bagasse esterified with glutaric anhydride in ionic liquids has not been studied. In this paper, the homogenous esterification of bagasse with glutaric anhydride was comparatively investigated with the isolated cellulose, hemicelluloses, and lignin in 1-allyl-3-methylimidazolium chloride (AmimCl) to reveal the reaction mechanism. Fourier transform infrared (FT-IR) indicated that the three components (cellulose, hemicelluloses, and lignin) were all involved in the esterification. The percentage of substitution (PS) of bagasse was gradually improved with the increased dosage of glutaric anhydride (10–40 mmol/g), which was primarily attributed to the increased esterification of cellulose and hemicelluloses. However, the PS fluctuation of lignin led to a decrease in the PS of bagasse at high glutaric anhydride dosage (50 mmol/g). The esterification reactivity of bagasse components followed the order of lignin > hemicelluloses > cellulose. The esterification mechanism was proposed as a nucleophilic substitution reaction. Nuclear magnetic resonance (NMR) analysis indicated that lignin aliphatic hydroxyls were prior to be esterified, and primary hydroxyls were more reactive than secondary hydroxyls in cellulose and hemicelluloses.
Journal of the Korean earth science society | 2015
Hui-Hui Wang; Younkyeong Nam
This study explores the impact of a STEM integration teacher professional development program focusing on teachers` perception of engineering and their attitudes toward integrating engineering into teaching. A total of sixty-eight teachers from ten schools participated in the program for five days. Data are collected from three main sources including (1) pre and post concept maps probing teachers` perceptions about the engineering discipline, (2) a pre and post survey measuring teachers` self-efficacy of teaching science/mathematics within the engineering context, and (3) engineering integrated science and (or) mathematics lesson plans and teaching reflections. This study utilizes both qualitative and quantitative research methods depending on the data we have collected. The results show that both science and math teachers thought that integrating engineering into teaching provided valuable outcomes, i.e., promoting students` learning about engineering and improving their interest in science or math through real-world problem solving exercises. Participants also felt more comfortable about integrating engineering in their teaching after the program. The results also imply that the teachers` understandings of engineering become more concrete after the program. This study also provides an overview of the challenges and advantages of teaching engineering in K-12 science and mathematics classrooms.
Polymers | 2018
Xueqin Zhang; Naiyu Xiao; Hui-Hui Wang; Chuanfu Liu; Xuejun Pan
In this study, the molten salt hydrate of lithium bromide (LiBr) was utilized as a non-derivatizing cellulose dissolution solvent to prepare regenerated cellulose films for kraft pulp. The effects of LiBr concentrations (60, 62, and 65 wt %) and dissolving time (from 5 to 40 min with the interval of 5 min) on the structures and the properties of the films were investigated. Fourier transform infrared (FT-IR) and cross-polarization magic-angle spinning carbon-13 nuclear magnetic resonance (CP/MAS 13C NMR) characterizations verified the breakage of inter- and intra-cellulose hydrogen bonds during the regeneration, resulting in the disruption of the crystalline structure of cellulose. X-ray diffraction (XRD) data indicated that the regeneration converted the polymorphism of cellulose from I to II as well as decreased its crystallinity. Ultraviolet-visible spectra (UV-Vis) and scanning electron microscopy (SEM) analyses revealed the excellent optical transparency of the films to visible light due to the complete dissolution of cellulose fibers as well as the sufficient breaking of the inter- and intra-cellulose hydrogen bonds. In terms of tensile testing, tuning LiBr concentrations and dissolving time could increase the elongation at break and tensile strength of the films. The maximum elongation at break of 26% and tensile strength of 67 MPa were achieved when the films prepared in 65 wt % LiBr for 10 and 15 min, respectively. These results indicated the great potential of the cellulose films for packaging use.
Physics of Plasmas | 2018
M. Jia; Youwen Sun; C. Paz-Soldan; R. Nazikian; Shuai Gu; Y. Q. Liu; T. Abrams; I. Bykov; L. Cui; T.E. Evans; A. M. Garofalo; W. Guo; X.Z. Gong; C.J. Lasnier; N.C. Logan; M. A. Makowski; D. M. Orlov; Hui-Hui Wang
Experiments using Resonant Magnetic Perturbations (RMPs), with a rotating n = 2 toroidal harmonic combined with a stationary n = 3 toroidal harmonic, have validated predictions that divertor heat and particle flux can be dynamically controlled while maintaining Edge Localized Mode (ELM) suppression in the DIII-D tokamak. Here, n is the toroidal mode number. ELM suppression over one full cycle of a rotating n = 2 RMP that was mixed with a static n = 3 RMP field has been achieved. Prominent heat flux splitting on the outer divertor has been observed during ELM suppression by RMPs in low collisionality regime in DIII-D. Strong changes in the three dimensional heat and particle flux footprint in the divertor were observed during the application of the mixed toroidal harmonic magnetic perturbations. These results agree well with modeling of the edge magnetic field structure using the TOP2D code, which takes into account the plasma response from the MARS-F code. These results expand the potential effectiveness ...
DEStech Transactions on Social Science, Education and Human Science | 2017
Hui-Hui Wang
At present, music teaching method applied in the practice teaching process is all kinds of, resulting in music teaching environment is uneven, some good and some bad. According to the problems of the current teaching of music and combined with the developing direction of the future of teaching reform, and gives some suggestions on the reform of teaching methods of music and literature. Teaching strategy is a concentrated reflection of teaching plan, it is to reform to promote the music teaching, teaching a scientific method and formulated in accordance with the development direction of music teaching. And making process in the selection of teaching strategies, in accordance with the concrete practice of music teaching, fully consider all relevant factors, combined with the already existing in the process of teaching music or possible future problems, according to the teaching of music standard, conform to the development direction of the teaching reform, in order to cultivate more the modernization of the compound talents with high quality for the purpose of.