Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hui-Yu Bai is active.

Publication


Featured researches published by Hui-Yu Bai.


Hypertension | 2014

Possible Role of Angiotensin-Converting Enzyme 2 and Activation of Angiotensin II Type 2 Receptor by Angiotensin-(1–7) in Improvement of Vascular Remodeling by Angiotensin II Type 1 Receptor Blockade

Kousei Ohshima; Masaki Mogi; Hirotomo Nakaoka; Jun Iwanami; Li-Juan Min; Harumi Kan-no; Kana Tsukuda; Toshiyuki Chisaka; Hui-Yu Bai; Xiao-Li Wang; Akiyoshi Ogimoto; Jitsuo Higaki; Masatsugu Horiuchi

Cross talk between the angiotensin-converting enzyme (ACE)/angiotensin II (Ang II)/Ang II type 1 (AT1) receptor axis and the ACE2/Ang-(1–7)/Mas axis plays a role in the pathogenesis of cardiovascular remodeling. Furthermore, possible stimulation of the Ang II type 2 (AT2) receptor by Ang-(1–7) has been highlighted as a new pathway. Therefore, we examined the possibility of whether the ACE2/Ang-(1–7)/Mas axis and Ang-(1–7)/AT2 receptor axis are involved in the inhibitory effects of AT1 receptor blockers on vascular remodeling. Wild-type, Mas-knockout, and AT2 receptor knockout mice were used in this study. Vascular injury was induced by polyethylene-cuff placement around the mouse femoral artery. Some mice were treated with azilsartan, an AT1 receptor blocker, or Ang-(1–7). Neointimal formation 2 weeks after cuff placement was more marked in Mas-knockout mice compared with wild-type mice. Treatment with azilsartan or Ang-(1–7) attenuated neointimal area, vascular smooth muscle cell proliferation, increases in the mRNA levels of monocyte chemoattractant protein-1, tumor necrosis factor-&agr;, and interleukin-1&bgr;, and superoxide anion production in the injured artery; however, these inhibitory effects of azilsartan and Ang-(1–7) were less marked in Mas-knockout mice. Administration of azilsartan or Ang-(1–7) attenuated the decrease in ACE2 mRNA and increased AT2 receptor mRNA but did not affect AT1 receptor mRNA or the decrease in Mas mRNA. The inhibitory effect of Ang-(1–7) on neointimal formation was less marked in AT2 receptor knockout mice compared with wild-type mice. These results suggest that blockade of the AT1 receptor by azilsartan could enhance the activities of the ACE2/Ang-(1–7)/Mas axis and ACE2/Ang-(1–7)/AT2 receptor axis, thereby inhibiting neointimal formation.


American Journal of Hypertension | 2014

Direct stimulation of angiotensin II type 2 receptor initiated after stroke ameliorates ischemic brain damage.

Li-Juan Min; Masaki Mogi; Kana Tsukuda; Fei Jing; Kousei Ohshima; Hirotomo Nakaoka; Harumi Kan-no; Xiao-Li Wang; Toshiyuki Chisaka; Hui-Yu Bai; Jun Iwanami; Masatsugu Horiuchi

BACKGROUND Stroke is a leading cause of death and disability; however, meta-analysis of randomized controlled trials of blood pressure-lowering drugs in acute stroke has shown no definite evidence of a beneficial effect on functional outcome. Accumulating evidence suggests that angiotensin II type 1 receptor blockade with angiotensin II type 2 (AT2) receptor stimulation could contribute to protection against ischemic brain damage. We examined the possibility that direct AT2 receptor stimulation by compound 21 (C21) initiated even after stroke can prevent ischemic brain damage. METHODS Stroke was induced by middle cerebral artery (MCA) occlusion, and the area of cerebral infarction was measured by magnetic resonant imaging. C21 (10 µg/kg/day) treatment was initiated immediately after MCA occlusion by intraperitoneal injection followed by treatment with C21 once daily. RESULTS We observed that ischemic area was enlarged in a time dependent fashion and decreased on day 5 after MCA occlusion. Treatment with C21 initiated after MCA occlusion significantly reduced the ischemic area, with improvement of neurological deficit in a time-dependent manner without affecting blood pressure. The decrease of cerebral blood flow after MCA occlusion was also ameliorated by C21 treatment. Moreover, treatment with C21 significantly attenuated superoxide anion production and expression of proinflammatory cytokines, monocyte chemoattractant protein 1, and tumor necrosis factor α. Interestingly, C21 administration significantly decreased blood-brain barrier permeability and cerebral edema on the ischemic side. CONCLUSIONS These results provide new evidence that direct AT2 receptor stimulation with C21 is a novel therapeutic approach to prevent ischemic brain damage after acute stroke.


Hypertension Research | 2014

Role of angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis in the hypotensive effect of azilsartan.

Jun Iwanami; Masaki Mogi; Kana Tsukuda; Xiao-Li Wang; Hirotomo Nakaoka; Kousei Ohshima; Toshiyuki Chisaka; Hui-Yu Bai; Harumi Kan-no; Li-Juan Min; Masatsugu Horiuchi

The possible counteracting effect of angiotensin (Ang)-converting enzyme (ACE)2/Ang-(1–7)/Mas axis against the ACE/Ang II/Ang II type 1 (AT1) receptor axis in blood pressure control has been previously described. We examined the possibility that this pathway might be involved in the anti-hypertensive effect of a newly developed AT1 receptor blocker (ARB), azilsartan, and compared azilsartan’s effects with those of another ARB, olmesartan. Transgenic mice carrying the human renin and angiotensinogen genes (hRN/hANG-Tg) were given azilsartan or olmesartan. Systolic and diastolic blood pressure, as determined by radiotelemetry, were significantly higher in hRN/hANG-Tg mice than in wild-type (WT) mice. Treatment with azilsartan or olmesartan (1 or 5 mg kg−1 per day) significantly decreased systolic and diastolic blood pressure, and the blood pressure-lowering effect of azilsartan was more marked than that of olmesartan. The urinary Na concentration decreased in an age-dependent manner in hRN/hANG-Tg mice. Administration of azilsartan or olmesartan increased urinary Na concentration, and this effect was weaker with olmesartan than with azilsartan. Azilsartan decreased ENaC-α mRNA expression in the kidney and decreased the ratio of heart to body weight. Olmesartan had a similar but less-marked effect. ACE2 mRNA expression was lower in the kidneys and hearts of hRN/hANG-Tg mice than in WT mice. This decrease in ACE2 mRNA expression was attenuated by azilsartan, but not by olmesartan. These results suggest that the hypotensive and anti-hypertrophic effects of azilsartan may involve activation of the ACE2/Ang-(1–7)/Mas axis with AT1 receptor blockade.


European Journal of Pharmacology | 2014

Possible synergistic effect of direct angiotensin II type 2 receptor stimulation by compound 21 with memantine on prevention of cognitive decline in type 2 diabetic mice

Jun Iwanami; Masaki Mogi; Kana Tsukuda; Fei Jing; Kousei Ohshima; Xiao-Li Wang; Hirotomo Nakaoka; Harumi Kan-no; Toshiyuki Chisaka; Hui-Yu Bai; Li-Juan Min; Masatsugu Horiuchi

Type 2 diabetes mellitus (T2DM) is known to be associated with increased risk of cognitive impairment including Alzheimer disease. Recent studies have suggested an interaction between angiotensin II and N-methyl-d-aspartic acid (NMDA) glutamate receptors. We previously reported that stimulation of the angiotensin II type 2 (AT2) receptor exerts brain protective effects. A newly developed AT2 receptor agonist, compound 21 (C21), has enabled examination of the direct effect of AT2 receptor stimulation in vivo. Accordingly, we examined the possible synergistic effect of C21 and memantine on cognitive impairment in T2DM mice, KKAy. KKAy were divided into four groups; (1) control, (2) treatment with C21 (10 μg/kg/day), (3) treatment with memantine (20mg/kg/day), and (4) treatment with both for 4 weeks, and subjected to Morris water maze tasks. Treatment with C21 or memantine alone at these doses tended to shorten escape latency compared to that in the control group. C21 treatment increased cerebral blood flow (CBF), but memantine did not influence CBF. Treatment with C21 or C21 plus memantine increased hippocampal field-excitatory postsynaptic potential (f-EPSP). Moreover, treatment with memantine or C21 increased acetylcholine level, which was lower in KKAy than in wild-type mice, and C21 plus memantine treatment enhanced memantine or C21-induced acetylcholine secretion. This study provides an insight into new approaches to understand the interaction of angiotensin II and neurotransmitters. We can anticipate a new therapeutic approach against cognitive decline using C21 and memantine.


American Journal of Hypertension | 2016

Low-Protein Diet-Induced Fetal Growth Restriction Leads to Exaggerated Proliferative Response to Vascular Injury in Postnatal Life.

Toshiyuki Chisaka; Masaki Mogi; Hirotomo Nakaoka; Harumi Kan-no; Kana Tsukuda; Xiao-Li Wang; Hui-Yu Bai; Bao-Shuai Shan; Masayoshi Kukida; Jun Iwanami; Takashi Higaki; Masatsugu Horiuchi

BACKGROUND We investigated the effects of fetal growth restriction (FGR) induced by maternal protein restriction on inflammatory vascular remodeling using a cuff-induced vascular injury mouse model. METHODS Dams (C57BL/6J strain mice) were fed an isocaloric diet containing 20% protein (normal protein; NP) or 8% protein (low protein; LP) from 10 weeks of age until delivery. On the day of delivery, all dams were returned to the NP diet. After weaning, offspring were fed the NP diet. When offspring were 10 weeks of age, vascular injury was induced by polyethylene cuff placement around the femoral artery. RESULTS Birth weight in offspring from dams fed LP until delivery (LPO) was significantly lower, but body weight was the same at 2 weeks after birth compared with that in NP offspring (NPO). Arterial blood pressure at 12 weeks of age did not differ between LPO and NPO. Neointima formation was exaggerated in LPO compared with NPO and associated with an increase in cell proliferation assessed by proliferating cell nuclear antigen (PCNA) staining index. Moreover, LPO showed enhanced expression of monocyte chemotactic protein-1, interleukin (IL)-6, IL-1β, tumor necrosis factor-α, and production of superoxide anion in the injured artery. Moreover, mRNA expression of isoforms of NAD(P)H oxidase subunits such as p22phox, p40phox, p47phox, p67phox, gp91phpx, and Rac1 in the injured arteries were enhanced in LPO. Furthermore, HIF-1α expression was increased in LPO compared with that in NPO. CONCLUSIONS These results suggest that maternal low-protein diet-induced FGR increases susceptibility of the vasculature to postnatal injury.


Journal of The American Society of Hypertension | 2015

Direct angiotensin II type 2 receptor stimulation by compound 21 prevents vascular dementia.

Jun Iwanami; Masaki Mogi; Kana Tsukuda; Xiao-Li Wang; Hirotomo Nakaoka; Harumi Kan-no; Toshiyuki Chisaka; Hui-Yu Bai; Bao-Shuai Shan; Masayoshi Kukida; Masatsugu Horiuchi

Angiotensin II type 2 (AT(2)) receptor activation has been reported to play a role in cognitive function, although its detailed mechanisms and pathologic significance are not fully understood. We examined the possibility that direct AT(2) receptor stimulation by compound 21 (C21) could prevent cognitive decline associated with hypoperfusion in the brain.We employed a bilateral common carotid artery stenosis (BCAS) model in mice as a model of vascular dementia. The Morris water maze task was performed 6 weeks after BCAS operation. Azilsartan (0.1 mg/kg/day) or C21 (10 μg/kg/day) was administered from 1 week before BCAS. Cerebral blood flow (CBF) and inflammatory cytokine levels were also determined. Wild-type (WT) mice showed significant prolongation of escape latency after BCAS, and this cognitive impairment was attenuated by pretreatment with azilsartan. Cognitive impairment was more marked in AT(2) receptor knockout (AT(2)KO) mice, and the preventive effect of azilsartan on cognitive decline was weaker in AT(2)KO mice than in WT mice, suggesting that the improvement of cognitive decline by azilsartan may involve stimulation of the AT(2) receptor. The significant impairment of spatial learning after BCAS in WT mice was attenuated by C21 treatment. The decrease in CBF in the BCAS-treated group was blunted by C21 treatment, and the increase in TNF-α and MCP-1 mRNA expression after BCAS was attenuated by C21 treatment. These findings indicate that direct AT(2) receptor stimulation attenuates ischemic vascular dementia induced by hypoperfusion at least in part through an increase in CBF, and a reduction of inflammation.


American Journal of Hypertension | 2016

Angiotensin II Type 2 Receptor Inhibits Vascular Intimal Proliferation With Activation of PPARγ

Masayoshi Kukida; Masaki Mogi; Kousei Ohshima; Hirotomo Nakaoka; Jun Iwanami; Harumi Kan-no; Kana Tsukuda; Toshiyuki Chisaka; Li-Juan Min; Xiao-Li Wang; Hui-Yu Bai; Bao-Shuai Shan; Akinori Higaki; Toshifumi Yamauchi; Takafumi Okura; Jitsuo Higaki; Masatsugu Horiuchi

BACKGROUND Angiotensin II type 2 (AT2) receptor stimulation could exert beneficial effects on vascular remodeling. Previously, we reported that AT2 receptor stimulation ameliorated insulin resistance in diabetic mice accompanied by PPARγ activation which also plays a variety of crucial roles in the vasculature. Therefore, this study aimed to investigate the vascular protective effect of the AT2 receptor with activation of PPARγ involving AT2 receptor-interacting protein (ATIP). METHODS AND RESULTS Vascular injury was induced by polyethylene-cuff placement around the femoral artery in C57BL/6J mice. Treatment with compound 21 (C21), an AT2 receptor agonist, decreased neointimal formation, cell proliferation, and the mRNA levels of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor (TNF)-α, and interleukin-1β, and phosphorylation of nuclear factor-kappa B, and increased PPARγ DNA-binding activity in the injured artery, whereas these inhibitory effects of C21 were attenuated by co-treatment with a PPARγ antagonist, GW9662. Treatment of vascular smooth muscle cells (VSMC) with C21 prepared from smAT2 transgenic mice, which highly express the AT2 receptor in VSMC, increased both PPARγ activity and its DNA-binding activity determined by dual-luciferase assay and electrophoresis mobility shift assay (EMSA), respectively. We observed that ATIP was involved in PPARγ complex formation, and that transfection of siRNA of ATIP1 attenuated the AT2 receptor-mediated increase in PPARγ activity in VSMC. In response to AT2 receptor stimulation, ATIP was translocated from the plasma membrane to the nucleus. CONCLUSIONS Our results suggest a new mechanism by which AT2 receptor stimulation activates PPARγ, thereby resulting in amelioration of vascular intimal proliferation, and that ATIP plays an important role in AT2 receptor-mediated PPARγ activation.


PLOS ONE | 2015

Drinking Citrus Fruit Juice Inhibits Vascular Remodeling in Cuff-Induced Vascular Injury Mouse Model

Arika Ohnishi; Rie Asayama; Masaki Mogi; Hirotomo Nakaoka; Harumi Kan-no; Kana Tsukuda; Toshiyuki Chisaka; Xiao-Li Wang; Hui-Yu Bai; Bao-Shuai Shan; Masayoshi Kukida; Jun Iwanami; Masatsugu Horiuchi

Citrus fruits are thought to have inhibitory effects on oxidative stress, thereby attenuating the onset and progression of cancer and cardiovascular disease; however, there are few reports assessing their effect on vascular remodeling. Here, we investigated the effect of drinking the juice of two different citrus fruits on vascular neointima formation using a cuff-induced vascular injury mouse model. Male C57BL6 mice were divided into five groups as follows: 1) Control (water) (C), 2) 10% Citrus unshiu (CU) juice (CU10), 3) 40% CU juice (CU40), 4) 10% Citrus iyo (CI) juice (CI10), and 5) 40% CI juice (CI40). After drinking them for 2 weeks from 8 weeks of age, cuff injury was induced by polyethylene cuff placement around the femoral artery. Neointima formation was significantly attenuated in CU40, CI10 and CI40 compared with C; however, no remarkable preventive effect was observed in CU10. The increases in levels of various inflammatory markers including cytokines such as monocyte chemotactic protein-1, interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α in response to vascular injury did not differ significantly between C, CU10 and CI10. The increases in cell proliferation and superoxide anion production were markedly attenuated in CI10, but not in CU10 compared with C. The increase in phosphorylated ERK expression was markedly attenuated both in CU10 and CI10 without significant difference between CU10 and CI10. Accumulation of immune cells did not differ between CU10 and CI10. These results indicate that drinking citrus fruit juice attenuates vascular remodeling partly via a reduction of oxidative stress. Interestingly, the preventive efficacy on neointima formation was stronger in CI than in CU at least in part due to more prominent inhibitory effects on oxidative stress by CI.


npj Aging and Mechanisms of Disease | 2016

Deficiency of angiotensin-converting enzyme 2 causes deterioration of cognitive function

Xiao-Li Wang; Jun Iwanami; Li-Juan Min; Kana Tsukuda; Hirotomo Nakaoka; Hui-Yu Bai; Bao-Shuai Shan; Harumi Kan-no; Masayoshi Kukida; Toshiyuki Chisaka; Toshifumi Yamauchi; Akinori Higaki; Masaki Mogi; Masatsugu Horiuchi

The classical renin–angiotensin system (RAS), known as the angiotensin (Ang)-converting enzyme (ACE)/Ang II/Ang II type 1 (AT1) receptor axis, induces various organ damages including cognitive decline. On the other hand, the ACE2/Ang-(1–7)/Mas receptor axis has been highlighted as exerting antagonistic actions against the classical RAS axis in the cardiovascular system. However, the roles of the ACE2/Ang-(1–7)/Mas axis in cognitive function largely remain to be elucidated, and we therefore examined possible roles of ACE2 in cognitive function. Male, 10-week-old C57BL6 (wild type, WT) mice and ACE2 knockout (KO) mice were subjected to the Morris water maze task and Y maze test to evaluate cognitive function. ACE2KO mice exhibited significant impairment of cognitive function, compared with that in WT mice. Superoxide anion production increased in ACE2KO mice, with increased mRNA levels of NADPH oxidase subunit, p22phox, p40phox, p67phox, and gp91phox in the hippocampus of ACE2KO mice compared with WT mice. The protein level of SOD3 decreased in ACE2KO mice compared with WT mice. The AT1 receptor mRNA level in the hippocampus was higher in ACE2KO mice compared with WT mice. In contrast, the AT2 receptor mRNA level in the hippocampus did not differ between the two strains. Mas receptor mRNA was highly expressed in the hippocampus compared with the cortex. Brain-derived neurotrophic factor (BDNF) mRNA and protein levels were lower in the hippocampus in ACE2KO mice compared with WT mice. Taken together, ACE2 deficiency resulted in impaired cognitive function, probably at least in part because of enhanced oxidative stress and a decrease in BDNF.


Journal of Cachexia, Sarcopenia and Muscle | 2016

Diabetic mice exhibited a peculiar alteration in body composition with exaggerated ectopic fat deposition after muscle injury due to anomalous cell differentiation

Masaki Mogi; Katsuhiko Kohara; Hirotomo Nakaoka; Harumi Kan-no; Kana Tsukuda; Xiao-Li Wang; Toshiyuki Chisaka; Hui-Yu Bai; Bao-Shuai Shan; Masayoshi Kukida; Jun Iwanami; Tetsuro Miki; Masatsugu Horiuchi

Sarcopenic obesity, age‐related muscle loss, which is compensated by an increase in fat mass, impairs quality of life in elderly people. Although the increase in intramuscular fat is associated with decreased insulin sensitivity and increased metabolic risk factors, the origin of diabetes‐associated intramuscular fat has not been elucidated. Here, we investigated intramuscular fat deposition using a muscle injury model in type 2 diabetic mice.

Collaboration


Dive into the Hui-Yu Bai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge