Li-Juan Min
Ehime University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Li-Juan Min.
Hypertension | 2004
Tetsuya Shiuchi; Masaru Iwai; Huan-Sheng Li; Lan Wu; Li-Juan Min; Jian-Mei Li; Midori Okumura; Tai-Xing Cui; Masatsugu Horiuchi
Abstract—Angiotensin II has been shown to contribute to the pathogenesis of insulin resistance; however, the mechanism is not well understood. The present study was undertaken to investigate the potential effect of an angiotensin II type-1 (AT1) receptor blocker, valsartan, to improve insulin resistance and to explore the signaling basis of cross-talk of the AT1 receptor- and insulin-mediated signaling in type 2 diabetic KK-Ay mice. Treatment of KK-Ay mice with valsartan at a dose of 1 mg/kg per day, which did not influence systolic blood pressure, significantly increased insulin-mediated 2-[3H]deoxy-d-glucose (2-[3H]DG) uptake into skeletal muscle and attenuated the increase in plasma glucose concentration after a glucose load and plasma concentrations of glucose and insulin. In contrast, insulin-mediated 2-[3H]DG uptake into skeletal muscle was not influenced in AT2 receptor null mice, and an AT2 receptor blocker, PD123319, did not affect 2-[3H]DG uptake and superoxide production in skeletal muscle of KK-Ay mice. Moreover, we observed that valsartan treatment exaggerated the insulin-induced phosphorylation of IRS-1, the association of IRS-1 with the p85 regulatory subunit of phosphoinositide 3 kinase (PI 3-K), PI 3-K activity, and translocation of GLUT4 to the plasma membrane. It also reduced tumor necrosis factor-&agr; (TNF-&agr;) expression and superoxide production in skeletal muscle of KK-Ay mice. Specific AT1 receptor blockade increases insulin sensitivity and glucose uptake in skeletal muscle of KK-Ay mice via stimulating the insulin signaling cascade and consequent enhancement of GLUT4 translocation to the plasma membrane.
Circulation Research | 2005
Li-Juan Min; Masaki Mogi; Jian-Mei Li; Jun Iwanami; Masaru Iwai; Masatsugu Horiuchi
Interaction between aldosterone (Aldo) and angiotensin II (Ang II) in the cardiovascular system has been highlighted; however, its detailed signaling mechanism is poorly understood. Here, we examined the cross-talk of growth-promoting signaling between Aldo and Ang II in vascular smooth muscle cells (VSMC). Treatment with a lower dose of Aldo (10−12 mol/L) and with a lower dose of Ang II (10−10 mol/L) significantly enhanced DNA synthesis, whereas Aldo or Ang II alone at these doses did not affect VSMC proliferation. This effect of a combination of Aldo and Ang II was markedly inhibited by a selective AT1 receptor blocker, olmesartan, a mineralocorticoid receptor antagonist, spironolactone, an MEK inhibitor, PD98059, or an EGF receptor tyrosine kinase inhibitor, AG1478. Treatment with Aldo together with Ang II, even at noneffective doses, respectively, synergistically increased extracellular signal-regulated kinase (ERK) activation, reaching 2 peaks at 10 to 15 minutes and 2 to 4 hours. The early ERK peak was effectively blocked by olmesartan or an EGF receptor kinase inhibitor, AG1478, but not by spironolactone, whereas the late ERK peak was completely inhibited by not only olmesartan, but also spironolactone. Combined treatment with Aldo and Ang II attenuated mitogen-activated protein kinase phosphatase-1 (MKP-1) expression and increased Ki-ras2A expression. The late ERK peak was not observed in VSMC treated with Ki-ras2A-siRNA. Interestingly, the decrease in MKP-1 expression and the increase in Ki-ras2A expression were restored by PD98059 or AG1478. These results suggest that Aldo exerts a synergistic mitogenic effect with Ang II and support the notion that blockade of both Aldo and Ang II could be more effective to prevent vascular remodeling.
Hypertension | 2009
Kana Tsukuda; Masaki Mogi; Jun Iwanami; Li-Juan Min; Akiko Sakata; Fei Jing; Masaru Iwai; Masatsugu Horiuchi
The pathological hallmark of Alzheimer disease is deposition of amyloid-&bgr; protein (A&bgr;) in the brain. Telmisartan is a unique angiotensin II receptor blocker with peroxisome proliferator-activated receptor-&ggr; (PPAR-&ggr;)–stimulating activity. Activation of PPAR-&ggr; is expected to prevent inflammation and A&bgr; accumulation in the brain. We investigated the possible preventive effect of telmisartan on cognitive decline in an Alzheimer disease mouse model via PPAR-&ggr; activation. Here, male ddY mice underwent ICV injection of A&bgr; 1-40. Cognitive function was evaluated by the Morris water maze test. A low dose of telmisartan (0.35 mg/kg per day) was administered in drinking water with or without GW9662, a PPAR-&ggr; antagonist. Cerebral blood flow was evaluated by laser speckle flowmetry. Inflammatory cytokine levels were measured by quantitative RT-PCR. A&bgr; 1-40 ICV injection significantly impaired cognitive function. Pretreatment with telmisartan improved this cognitive decline to a similar level to that in control mice. Cotreatment with GW9662, a PPAR-&ggr; antagonist, attenuated this telmisartan-mediated improvement of cognition. Treatment with telmisartan enhanced cerebral blood flow and attenuated the A&bgr;-induced increase in expression of cytokines, such as tumor necrosis factor-&agr; and inducible NO synthase in the brain. Interestingly, coadministration of GW9662 cancelled these beneficial effects of telmisartan. A&bgr; 1-40 concentration in the brain was significantly decreased by treatment with telmisartan, whereas administration of GW9662 attenuated the decrease in telmisartan-mediated A&bgr; 1-40 concentration. Taken together, our findings suggest that even a low dose of telmisartan had a preventive effect on cognitive decline in an Alzheimer disease mouse model, partly because of PPAR-&ggr; activation.
Circulation | 2005
Masaru Iwai; Rui Chen; Zhen Li; Tetsuya Shiuchi; Jun Suzuki; Ayumi Ide; Masahiro Tsuda; Midori Okumura; Li-Juan Min; Masaki Mogi; Masatsugu Horiuchi
Background—The role of angiotensin II (Ang II) type 2 (AT2) receptor in atherosclerosis was explored with the use of AT2 receptor/apolipoprotein E (ApoE)–double-knockout (AT2/ApoE-DKO) mice, with a focus on oxidative stress. Methods and Results—After treatment with a high-cholesterol diet (1.25% cholesterol) for 10 weeks, ApoE-knockout (KO) mice developed atherosclerotic lesions in the aorta. In AT2/ApoE-DKO mice receiving a high-cholesterol diet, the atherosclerotic changes were further exaggerated, without significant changes in plasma cholesterol level and blood pressure. In the atherosclerotic lesion, an increase in superoxide production, NADPH oxidase activity, and expression of p47phox was observed. These changes were also greater in AT2/ApoE-DKO mice. An Ang II type 1 (AT1) receptor blocker, valsartan, inhibited atherosclerotic lesion formation, superoxide production, NADPH oxidase activity, and p47phox expression; these inhibitory effects were significantly weaker in AT2/ApoE-KO mice. We further examined the signaling mechanism of the AT2 receptor–mediated antioxidative effect in cultured fetal vascular smooth muscle cells. NADPH oxidase activity and phosphorylation and translocation of p47phox induced by Ang II were inhibited by valsartan but enhanced by an AT2 receptor blocker, PD123319. Conclusions—These results suggest that AT2 receptor stimulation attenuates atherosclerosis through inhibition of oxidative stress and that the antiatherosclerotic effect of valsartan could be at least partly due to AT2 receptor stimulation by unbound Ang II.
Hypertension | 2005
Masahiro Tsuda; Masaru Iwai; Jian-Mei Li; Huan-Sheng Li; Li-Juan Min; Ayumi Ide; Midori Okumura; Jun Suzuki; Masaki Mogi; Hiromichi Suzuki; Masatsugu Horiuchi
The present study explored the possibility that estrogen enhances the inhibitory effect of an angiotensin II type-1 (AT1) receptor blocker (ARB), olmesartan, on atherosclerosis, focusing on oxidative stress using apolipoprotein E knockout mice (ApoEKO). After 6 weeks on a high-cholesterol diet, marked atherosclerotic lesion formation with an increase in oxidative stress, such as superoxide production, NAD(P)H oxidase activity and expression of p47phox mRNA and rac-1 mRNA, were observed in the proximal aorta in both male and female ApoEKO mice, whereas these changes were less marked in female mice. Ovariectomy enhanced these parameters, the changes of which were reversed by 17&bgr;-estradiol (80 &mgr;g/kg per day) replacement. Treatment with olmesartan (3 mg/kg per day) significantly inhibited oxidative stress and atherosclerosis, whereas its inhibitory effects were more marked in female than in male or ovariectomized mice. Smaller doses of olmesartan (0.5 mg/kg per day) or 17&bgr;-estradiol (20 &mgr;g/kg per day) did not influence atherosclerosis and oxidative stress in ovariectomized mice, whereas co-administration of olmesartan and 17&bgr;-estradiol at these doses attenuated these parameters. An angiotensin-converting enzyme (ACE) inhibitor, temocapril, also inhibited atherosclerotic changes similarly to olmesartan. Moreover, angiotensin II–mediated activation of NAD(P)H oxidase in cultured vascular smooth muscle cells was attenuated by 17&bgr;-estradiol. These results indicate that estrogen and an ARB synergistically attenuate atherosclerosis at least partly via inhibition of oxidative stress.
Hypertension | 2006
Masaki Mogi; Jian-Mei Li; Jun Iwanami; Li-Juan Min; Kana Tsukuda; Masaru Iwai; Masatsugu Horiuchi
The molecular mechanisms of the contribution of angiotensin II type-1 receptor blockers to neuronal protection are still unclear. Here, we investigated the effect of angiotensin II type-2 (AT2) receptor stimulation on neurons and cognitive function involving a new neuroprotective factor, methyl methanesulfonate sensitive 2 (MMS2). Angiotensin II treatment of neurospheres enhanced their differentiation and increased MMS2 expression. Knockdown of the MMS2 gene by small interference RNA (siRNA) significantly reduced the number of neurospheres, with loss of sphere formation. An angiotensin II type-1 receptor blocker, valsartan, enhanced such neurosphere differentiation and MMS2 induction, whereas an AT2 receptor antagonist, PD123319, inhibited them. After mice underwent permanent middle cerebral artery occlusion, AT2 receptor mRNA expression was significantly increased in the ischemic side of the brain. Passive avoidance rate to evaluate cognitive function was significantly impaired in AT2 receptor null (Agtr2−) mice compared with wild-type mice. Treatment with valsartan prevented the cognitive decline in wild-type mice, but this effect was weaker in Agtr2− mice. In ischemic brain regions, MMS2 was increased in wild-type mice, but not in Agtr2− mice. Valsartan also enhanced MMS2 expression to a greater degree in wild-type mice. Finally, intracerebroventricular administration of MMS2 siRNA showed more impaired avoidance rate after middle cerebral artery occlusion compared with that in control siRNA–transfected mice. These findings experimentally support the clinical evidence and indicate a unique mechanism of the AT2 receptor in brain protection.
Biochemical and Biophysical Research Communications | 2008
Masaki Mogi; Jian-Mei Li; Kana Tsukuda; Jun Iwanami; Li-Juan Min; Akiko Sakata; Teppei Fujita; Masaru Iwai; Masatsugu Horiuchi
Telmisartan is a unique angiotensin receptor blocker (ARB) and partial agonist of peroxisome proliferator-activated receptor (PPAR)-gamma. Here, we investigated the preventive effect of telmisartan on cognitive decline in Alzheimer disease. In ddY mice, intracerebroventricular injection of Abeta 1-40 significantly attenuated their cognitive function evaluated by shuttle avoidance test. Pretreatment with a non-hypotensive dose of telmisartan significantly inhibited such cognitive decline. Interestingly, co-treatment with GW9662, a PPAR-gamma antagonist, partially inhibited this improvement of cognitive decline. Another ARB, losartan, which has less PPAR-gamma agonistic effect, also inhibited Abeta-injection-induced cognitive decline; however the effect was smaller than that of telmisartan and was not affected by GW9662. Immunohistochemical staining for Abeta showed the reduced Abeta deposition in telmisartan-treated mice. However, this reduction was not observed in mice co-administered GW9662. These findings suggest that ARB has a preventive effect on cognitive impairment in Alzheimer disease, and telmisartan, with PPAR-gamma activation, could exert a stronger effect.
Journal of Cerebral Blood Flow and Metabolism | 2012
Fei Jing; Masaki Mogi; Akiko Sakata; Jun Iwanami; Kana Tsukuda; Kousei Ohshima; Li-Juan Min; Ulrike Muscha Steckelings; Thomas Unger; Björn Dahlöf; Masatsugu Horiuchi
We examined the possibility that direct stimulation of the angiotensin II type 2 (AT2) receptor by a newly generated direct AT2 receptor agonist, Compound 21 (C21), enhances cognitive function. Treatment with C21 intraperitoneal injection for 2 weeks significantly enhanced cognitive function evaluated by the Morris water maze test in C57BL6 mice, but this effect was not observed in AT2 receptor-deficient mice. However, C21-induced cognitive enhancement in C57BL6 mice was attenuated by coadministration of icatibant, a bradykinin B2 receptor antagonist. Administration of C21 dose dependently increased cerebral blood flow assessed by laser speckle flowmetry and hippocampal field-excitatory postsynaptic potential (f-EPSP) determined by electrophysiological techniques in C57BL6 mice. Furthermore, activation of the AT2 receptor by C21 promoted neurite outgrowth of cultured hippocampal neurons prepared from fetal transgenic mice expressing green fluorescent protein. Finally, we investigated the pathologic relevance of C21 for spatial learning using an Alzheimers disease mouse model with intracerebroventricular injection of amyloid-β (1 to 40). We observed that treatment with C21 prevented cognitive decline in this model. These results suggest that a direct AT2 receptor agonist, C21, enhances cognitive function at least owing to an increase in CBF, enhancement of f-EPSP, and neurite outgrowth in hippocampal neurons.
Hypertension | 2012
Li-Juan Min; Masaki Mogi; Masachika Shudou; Fei Jing; Kana Tsukuda; Kousei Ohshima; Jun Iwanami; Masatsugu Horiuchi
We reported previously that an angiotensin II type 1 receptor blocker, telmisartan, improved cognitive decline with peroxisome proliferator-activated receptor-&ggr; activation; however, the detailed mechanisms are unclear. Enhanced blood-brain barrier (BBB) permeability with alteration of tight junctions is suggested to be related to diabetes mellitus. Therefore, we examined the possibility that telmisartan could attenuate BBB impairment with peroxisome proliferator-activated receptor-&ggr; activation to improve diabetes mellitus–induced cognitive decline. Type 2 diabetic mice KKAy exhibited impairment of cognitive function, and telmisartan treatment attenuated this. Cotreatment with GW9662, a peroxisome proliferator-activated receptor-&ggr; antagonist, interfered with these protective effects of telmisartan against cognitive function. BBB permeability was increased in both the cortex and hippocampus in KKAy mice. Administration of telmisartan attenuated this increased BBB permeability. Coadministration of GW9662 reduced this effect of telmisartan. Significant decreases in expression of tight junction proteins and increases in matrix metalloproteinase expression, oxidative stress, and proinflammatory cytokine production were observed in the brain, and treatment with telmisartan restored these changes. Swollen astroglial end-feet in BBB were observed in KKAy mice, and this change in BBB ultrastructure was decreased in telmisartan. These effects of telmisartan were weakened by cotreatment with GW9662. In contrast, administration of another angiotensin II type 1 receptor blocker, losartan, was less effective compared with telmisartan in terms of preventing BBB permeability and astroglial end-foot swelling, and coadministration of GW9662 did not affect the effects of losartan. These findings are consistent with the possibility that, in type 2 diabetic mice, angiotensin II type 1 receptor blockade with peroxisome proliferator-activated receptor-&ggr; activation by telmisartan may help with protection against cognitive decline by preserving the integrity of the BBB.
PLOS ONE | 2012
Kousei Ohshima; Masaki Mogi; Fei Jing; Jun Iwanami; Kana Tsukuda; Li-Juan Min; Akiyoshi Ogimoto; Björn Dahlöf; Ulrike Muscha Steckelings; Tomas Unger; Jitsuo Higaki; Masatsugu Horiuchi
Objectives The role of angiotensin II type 2 (AT2) receptor stimulation in the pathogenesis of insulin resistance is still unclear. Therefore we examined the possibility that direct AT2 receptor stimulation by compound 21 (C21) might contribute to possible insulin-sensitizing/anti-diabetic effects in type 2 diabetes (T2DM) with PPARγ activation, mainly focusing on adipose tissue. Methods T2DM mice, KK-Ay, were subjected to intraperitoneal injection of C21 and/or a PPARγ antagonist, GW9662 in drinking water for 2 weeks. Insulin resistance was evaluated by oral glucose tolerance test, insulin tolerance test, and uptake of 2-[3H] deoxy-D-glucose in white adipose tissue. Morphological changes of adipose tissues as well as adipocyte differentiation and inflammatory response were examined. Results Treatment with C21 ameliorated insulin resistance in KK-Ay mice without influencing blood pressure, at least partially through effects on the PPARγ pathway. C21 treatment increased serum adiponectin concentration and decreased TNF-α concentration; however, these effects were attenuated by PPARγ blockade by co-treatment with GW9662. Moreover, we observed that administration of C21 enhanced adipocyte differentiation and PPARγ DNA-binding activity, with a decrease in inflammation in white adipose tissue, whereas these effects of C21 were attenuated by co-treatment with GW9662. We also observed that administration of C21 restored β cell damage in diabetic pancreatic tissue. Conclusion The present study demonstrated that direct AT2 receptor stimulation by C21 accompanied with PPARγ activation ameliorated insulin resistance in T2DM mice, at least partially due to improvement of adipocyte dysfunction and protection of pancreatic β cells.