Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where ifeng Hu is active.

Publication


Featured researches published by ifeng Hu.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Rapid loss of lakes on the Mongolian Plateau

Shengli Tao; Jingyun Fang; Xia Zhao; Shuqing Zhao; Haihua Shen; Huifeng Hu; Zhiyao Tang; Zhiheng Wang; Qinghua Guo

Significance The Mongolian Plateau, composed mainly of Inner Mongolia in China and the Republic of Mongolia, has been experiencing remarkable lake shrinkage during the recent decades because of intensive human activities and climate changes. This study provides a comprehensive satellite-based evaluation of lake shrinkage across the plateau, and finds a greater decreasing rate of the number of lakes in Inner Mongolia than in Mongolia (34.0% vs. 17.6%) between the late 1980s and 2010, due mainly to an unsustainable mining boom and agricultural irrigation in the former. Disastrous damages to the natural systems are threatening the livelihood of local people, and we thus call for an urgent action to prevent further deterioration. Lakes are widely distributed on the Mongolian Plateau and, as critical water sources, have sustained Mongolian pastures for hundreds of years. However, the plateau has experienced significant lake shrinkage and grassland degradation during the past several decades. To quantify the changes in all of the lakes on the plateau and the associated driving factors, we performed a satellite-based survey using multitemporal Landsat images from the 1970s to 2000s, combined with ground-based censuses. Our results document a rapid loss of lakes on the plateau in the past decades: the number of lakes with a water surface area >1 km2 decreased from 785 in the late 1980s to 577 in 2010, with a greater rate of decrease (34.0%) in Inner Mongolia of China than in Mongolia (17.6%). This decrease has been particularly pronounced since the late 1990s in Inner Mongolia and the number of lakes >10 km2 has declined by 30.0%. The statistical analyses suggested that in Mongolia precipitation was the dominant driver for the lake changes, and in Inner Mongolia coal mining was most important in its grassland area and irrigation was the leading factor in its cultivated area. The deterioration of lakes is expected to continue in the following decades not only because of changing climate but also increasing exploitation of underground mineral and groundwater resources on the plateau. To protect grasslands and the indigenous nomads, effective action is urgently required to save these valuable lakes from further deterioration.


Global Change Biology | 2014

Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth

Jingyun Fang; Zhaodi Guo; Huifeng Hu; Tomomichi Kato; Hiroyuki Muraoka; Yowhan Son

Forests play an important role in regional and global carbon (C) cycles. With extensive afforestation and reforestation efforts over the last several decades, forests in East Asia have largely expanded, but the dynamics of their C stocks have not been fully assessed. We estimated biomass C stocks of the forests in all five East Asian countries (China, Japan, North Korea, South Korea, and Mongolia) between the 1970s and the 2000s, using the biomass expansion factor method and forest inventory data. Forest area and biomass C density in the whole region increased from 179.78 × 10(6) ha and 38.6 Mg C ha(-1) in the 1970s to 196.65 × 10(6) ha and 45.5 Mg C ha(-1) in the 2000s, respectively. The C stock increased from 6.9 Pg C to 8.9 Pg C, with an averaged sequestration rate of 66.9 Tg C yr(-1). Among the five countries, China and Japan were two major contributors to the total regions forest C sink, with respective contributions of 71.1% and 32.9%. In China, the areal expansion of forest land was a larger contributor to C sinks than increased biomass density for all forests (60.0% vs. 40.0%) and for planted forests (58.1% vs. 41.9%), while the latter contributed more than the former for natural forests (87.0% vs. 13.0%). In Japan, increased biomass density dominated the C sink for all (101.5%), planted (91.1%), and natural (123.8%) forests. Forests in South Korea also acted as a C sink, contributing 9.4% of the total regions sink because of increased forest growth (98.6%). Compared to these countries, the reduction in forest land in both North Korea and Mongolia caused a C loss at an average rate of 9.0 Tg C yr(-1), equal to 13.4% of the total regions C sink. Over the last four decades, the biomass C sequestration by East Asias forests offset 5.8% of its contemporary fossil-fuel CO2 emissions.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Evidence for environmentally enhanced forest growth

Jingyun Fang; Tomomichi Kato; Zhaodi Guo; Yuanhe Yang; Huifeng Hu; Haihua Shen; Xia Zhao; Ayaka W. Kishimoto-Mo; Yanhong Tang; R. A. Houghton

Significance Northern forests have sequestered a substantial amount of carbon dioxide from the atmosphere during the past several decades. This large carbon (C) sink usually is considered to be driven by tree regrowth after stand-replacing disturbance and growth enhancement due to environmental changes, but the relative contribution between these two processes remains unclear. In this study, we evaluate the contribution of growth enhancement induced by environmental changes to biomass C sink in Japan’s forests and demonstrate that this growth enhancement accounts for 8.4–21.6% of biomass C sink in four major plantations from 1980 to 2005. This finding highlights that global environmental changes can stimulate tree growth and thus enhance forest C sequestration over a broad geographical scale. Forests in the middle and high latitudes of the northern hemisphere function as a significant sink for atmospheric carbon dioxide (CO2). This carbon (C) sink has been attributed to two processes: age-related growth after land use change and growth enhancement due to environmental changes, such as elevated CO2, nitrogen deposition, and climate change. However, attribution between these two processes is largely controversial. Here, using a unique time series of an age-class dataset from six national forest inventories in Japan and a new approach developed in this study (i.e., examining changes in biomass density at each age class over the inventory periods), we quantify the growth enhancement due to environmental changes and its contribution to biomass C sink in Japan’s forests. We show that the growth enhancement for four major plantations was 4.0∼7.7 Mg C⋅ha−1 from 1980 to 2005, being 8.4–21.6% of biomass C sequestration per hectare and 4.1–35.5% of the countrys total net biomass increase of each forest type. The growth enhancement differs among forest types, age classes, and regions. Our results provide, to our knowledge, the first ground-based evidence that global environmental changes can increase C sequestration in forests on a broad geographic scale and imply that both the traits and age of trees regulate the responses of forest growth to environmental changes. These findings should be incorporated into the prediction of forest C cycling under a changing climate.


Science China-life Sciences | 2013

Spatio-temporal changes in biomass carbon sinks in China's forests from 1977 to 2008

Zhaodi Guo; Huifeng Hu; Pin Li; NuYun Li; Jingyun Fang

Forests play a leading role in regional and global carbon (C) cycles. Detailed assessment of the temporal and spatial changes in C sinks/sources of China’s forests is critical to the estimation of the national C budget and can help to constitute sustainable forest management policies for climate change. In this study, we explored the spatio-temporal changes in forest biomass C stocks in China between 1977 and 2008, using six periods of the national forest inventory data. According to the definition of the forest inventory, China’s forest was categorized into three groups: forest stand, economic forest, and bamboo forest. We estimated forest biomass C stocks for each inventory period by using continuous biomass expansion factor (BEF) method for forest stands, and the mean biomass density method for economic and bamboo forests. As a result, China’s forests have accumulated biomass C (i.e., biomass C sink) of 1896 Tg (1 Tg=1012 g) during the study period, with 1710, 108 and 78 Tg C in forest stands, and economic and bamboo forests, respectively. Annual forest biomass C sink was 70.2 Tg C a−1, offsetting 7.8% of the contemporary fossil CO2 emissions in the country. The results also showed that planted forests have functioned as a persistent C sink, sequestrating 818 Tg C and accounting for 47.8% of total C sink in forest stands, and that the old-, mid- and young-aged forests have sequestrated 930, 391 and 388 Tg C from 1977 to 2008. Our results suggest that China’s forests have a big potential as biomass C sink in the future because of its large area of planted forests with young-aged growth and low C density.


Landscape Ecology | 2015

Satellite-indicated long-term vegetation changes and their drivers on the Mongolian Plateau

Xia Zhao; Huifeng Hu; Haihua Shen; Daojing Zhou; Liming Zhou; Ranga B. Myneni; Jingyun Fang

The Mongolian Plateau, comprising the nation of Mongolia and the Inner Mongolia Autonomous Region of China, has been influenced by significant climatic changes and intensive human activities. Previous satellite-based analyses have suggested an increasing tendency in the vegetation cover over recent decades. However, several ground-based observations have indicated a decline in vegetation production. This study aimed to explore long-term changes in vegetation greenness and land surface phenology in relation to changes in temperature and precipitation on the Plateau between 1982 and 2011 using the normalized difference vegetation index (NDVI). Across the Plateau, a significantly positive trend in the growing season (May–September) NDVI was observed from 1982 to 1998, but since that time, the NDVI has not shown a persistent increase, thus causing an insignificant trend over the entire study period. For the steppe vegetation (a major vegetation type on the Plateau), the NDVI increased significantly in spring but decreased in summer. Precipitation was the dominant factor related to changes in steppe vegetation. Warming in spring contributed to earlier vegetation green-up only in meadow steppe vegetation, implying that water deficiency in typical and desert steppe vegetation may eliminate the effect of warming. Our results also suggest a combined effect of climatic and non-climatic factors and highlight the need to examine the role of regional human activities in the control of vegetation dynamics.


Scientific Reports | 2016

Effects of shrub encroachment on soil organic carbon in global grasslands

He Li; Haihua Shen; Leiyi Chen; Taoyu Liu; Huifeng Hu; Xia Zhao; Luhong Zhou; P. Zhang; Jingyun Fang

This study aimed to evaluate the effect of shrub encroachment on soil organic carbon (SOC) content at broad scales and its controls. We conducted a meta-analysis using paired control data of shrub-encroached grassland (SEG) vs. non-SEG collected from 142 studies worldwide. SOC contents (0–50 cm) were altered by shrub encroachment, with changes ranging from −50% to + 300%, with an effect size of 0.15 (p < 0.01). The SOC contents increased in semi-arid and humid regions, and showed a greater rate of increase in grassland encroached by leguminous shrubs than by non-legumes. The SOC content decreased in silty and clay soils but increased in sand, sandy loam and sandy clay loam. The SOC content increment was significantly positively correlated with precipitation and temperature as well as with soil bulk density but significantly negatively correlated with soil total nitrogen. We conclude the main effects of shrub encroachment would be to increase topsoil organic carbon content. As structural equation model revealed, soils properties seem to be the primary factors responsible for the extent of the changes, coarse textured soils having a greater capacity than fine textured soils to increase the SOC content. This increased effect appears to be secondarily enhanced by climate and plant elements.


Scientific Reports | 2015

The stage-classified matrix models project a significant increase in biomass carbon stocks in China's forests between 2005 and 2050.

Huifeng Hu; Shaopeng Wang; Zhaodi Guo; Bing Xu; Jingyun Fang

China’s forests are characterized by young age, low carbon (C) density and a large plantation area, implying a high potential for increasing C sinks in the future. Using data of provincial forest area and biomass C density from China’s forest inventories between 1994 and 2008 and the planned forest coverage of the country by 2050, we developed a stage-classified matrix model to predict biomass C stocks of China’s forests from 2005 to 2050. The results showed that total forest biomass C stock would increase from 6.43 Pg C (1 Pg = 1015 g) in 2005 to 9.97 Pg C (95% confidence interval: 8.98 ~ 11.07 Pg C) in 2050, with an overall net C gain of 78.8 Tg C yr−1 (56.7 ~ 103.3 Tg C yr−1; 1 Tg = 1012 g). Our findings suggest that China’s forests will be a large and persistent biomass C sink through 2050.


Nature Communications | 2017

Carbon stocks and changes of dead organic matter in China's forests

Jianxiao Zhu; Huifeng Hu; Shengli Tao; Xiulian Chi; Peng Li; Lai Jiang; Chengjun Ji; Jiangling Zhu; Zhiyao Tang; Yude Pan; Richard A. Birdsey; Xinhua He; Jingyun Fang

Forests play an important role in global carbon cycles. However, the lack of available information on carbon stocks in dead organic matter, including woody debris and litter, reduces the reliability of assessing the carbon cycles in entire forest ecosystems. Here we estimate that the national DOM carbon stock in the period of 2004–2008 is 925 ± 54 Tg, with an average density of 5.95 ± 0.35 Mg C ha−1. Over the past two decades from periods of 1984−1988 to 2004−2008, the national dead organic matter carbon stock has increased by 6.7 ± 2.2 Tg carbon per year, primarily due to increasing forest area. Temperature and precipitation increase the carbon density of woody debris, but decrease that of litter. Additionally, the woody debris increases significantly with above ground biomass and forest age. Our results can improve estimates of the carbon budget in Chinas forests and for better understanding of effects of climate and stand characteristics on dead organic matter distribution.Reliable estimates of the total forest carbon (C) pool are lacking due to insufficient information on dead organic matter (DOM). Here, the authors estimate that the current DOM C stock in China is 925 ± 54 Tg and that it grew by 6.7 ± 2.2 Tg C/yr over the past two decades primarily due to increasing forest area


Global Change Biology | 2017

Vegetation carbon sequestration in Chinese forests from 2010 to 2050.

Nianpeng He; Ding Wen; Jianxing Zhu; Xuli Tang; Li Xu; Li Zhang; Huifeng Hu; Mei Huang; Guirui Yu

Forests store a large part of the terrestrial vegetation carbon (C) and have high C sequestration potential. Here, we developed a new forest C sequestration (FCS) model based on the secondary succession theory, to estimate vegetation C sequestration capacity in Chinas forest vegetation. The model used the field measurement data of 3161 forest plots and three future climate scenarios. The results showed that logistic equations provided a good fit for vegetation biomass with forest age in natural and planted forests. The FCS model has been verified with forest biomass data, and model uncertainty is discussed. The increment of vegetation C storage in Chinas forest vegetation from 2010 to 2050 was estimated as 13.92 Pg C, while the average vegetation C sequestration rate was 0.34 Pg C yr-1 with a 95% confidence interval of 0.28-0.42 Pg C yr-1 , which differed significantly between forest types. The largest contributor to the increment was deciduous broadleaf forest (37.8%), while the smallest was deciduous needleleaf forest (2.7%). The vegetation C sequestration rate might reach its maximum around 2020, although vegetation C storage increases continually. It is estimated that vegetation C sequestration might offset 6-8% of Chinas future emissions. Furthermore, there was a significant negative relationship between vegetation C sequestration rate and C emission rate in different provinces of China, suggesting that developed provinces might need to compensate for undeveloped provinces through C trade. Our findings will provide valuable guidelines to policymakers for designing afforestation strategies and forest C trade in China.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010

Fei Lu; Huifeng Hu; Wenjuan Sun; Jiaojun Zhu; Guobin Liu; Wangming Zhou; Quanfa Zhang; Peili Shi; Xiuping Liu; Xing Wu; Lu Zhang; Xiaohua Wei; Limin Dai; Kerong Zhang; Y.M. Sun; Sha Xue; Wanjun Zhang; Dingpeng Xiong; Lei Deng; Bojie Liu; Li Zhou; Chao Zhang; Xiao Zheng; Jiansheng Cao; Yao Huang; Nianpeng He; Guoyi Zhou; Yongfei Bai; Zongqiang Xie; Zhiyao Tang

Significance China has launched six key ecological restoration projects since the late 1970s, but the contribution of these projects to terrestrial C sequestration remains unknown. In this study we examined the ecosystem C sink in the project area (∼16% of the country’s land area) and evaluated the project-induced C sequestration. The total annual C sink in the project area between 2001 and 2010 was estimated to be 132 Tg C per y, over half of which (74 Tg C per y, 56%) was caused by the implementation of the six projects. This finding indicates that the implementation of the ecological restoration projects in China has significantly increased ecosystem C sequestration across the country. The long-term stressful utilization of forests and grasslands has led to ecosystem degradation and C loss. Since the late 1970s China has launched six key national ecological restoration projects to protect its environment and restore degraded ecosystems. Here, we conducted a large-scale field investigation and a literature survey of biomass and soil C in China’s forest, shrubland, and grassland ecosystems across the regions where the six projects were implemented (∼16% of the country’s land area). We investigated the changes in the C stocks of these ecosystems to evaluate the contributions of the projects to the country’s C sink between 2001 and 2010. Over this decade, we estimated that the total annual C sink in the project region was 132 Tg C per y (1 Tg = 1012 g), over half of which (74 Tg C per y, 56%) was attributed to the implementation of the projects. Our results demonstrate that these restoration projects have substantially contributed to CO2 mitigation in China.

Collaboration


Dive into the ifeng Hu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haihua Shen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xia Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Joan L. Walker

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

He Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yuanhe Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge